DOI QR코드

DOI QR Code

The Transcription Cofactor Swi6 of the Fusarium graminearum Is Involved in Fusarium Graminearum Virus 1 Infection-Induced Phenotypic Alterations

  • Son, Moonil (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Yoonseung (Department of Applied Biology and Chemistry, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kook-Hyung (Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2015.12.17
  • Accepted : 2016.02.24
  • Published : 2016.08.01

Abstract

The transcription cofactor Swi6 plays important roles in regulating vegetative growth and meiosis in Saccharomyces cerevisiae. Functions of Swi6 ortholog were also characterized in Fusarium graminearum which is one of the devastating plant pathogenic fungi. Here, we report possible role of FgSwi6 in the interaction between F. graminearum and Fusarium graminearum virus 1 (FgV1) strain DK21. FgV1 perturbs biological characteristics of host fungi such as vegetative growth, sporulation, pigmentation, and reduction of the virulence (hypovirulence) of its fungal host. To characterize function(s) of FgSWI6 gene during FgV1 infection, targeted deletion, over-expression, and complementation mutants were generated and further infected successfully with FgV1. Deletion of FgSwi6 led to severe reduction of vegetative growth even aerial mycelia while over-expression did not affect any remarkable alteration of phenotype in virus-free isolates. Virus-infected (VI) FgSWI6 deletion isolate exhibited completely delayed vegetative growth. However, VI FgSWI6 over-expression mutant grew faster than any other VI isolates. To verify whether these different growth patterns in VI isolates, viral RNA quantification was carried out using qRT-PCR. Surprisingly, viral RNA accumulations in VI isolates were similar regardless of introduced mutations. These results provide evidence that FgSWI6 might play important role(s) in FgV1 induced phenotype alteration such as delayed vegetative growth.

Keywords

References

  1. Cho, W. K., Yu, J., Lee, K. M., Son, M., Min, K., Lee, Y. W. and Kim, K. H. 2012. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics 13:173. https://doi.org/10.1186/1471-2164-13-173
  2. Cho, W. K., Lee, K. M., Yu, J., Son, M. and Kim, K. H. 2013. Insight into mycoviruses infecting Fusarium species. Adv. Virus Res. 86:273-288. https://doi.org/10.1016/B978-0-12-394315-6.00010-6
  3. Chu, Y. M., Jeon, J. J., Yea, S. J., Kim, Y. H., Yun, S. H., Lee, Y. W. and Kim, K. H. 2002. Double-stranded RNA mycovirus from Fusarium graminearum. Appl. Environ. Microbiol. 68:2529-2534. https://doi.org/10.1128/AEM.68.5.2529-2534.2002
  4. Chu, Y. M., Lim, W. S., Yea, S. J., Cho, J. D., Lee, Y. W. and Kim, K. H. 2004. Complexity of dsRNA mycovirus isolated from Fusarium graminearum. Virus Genes 28:135-143. https://doi.org/10.1023/B:VIRU.0000012270.67302.35
  5. Faruk, M. I., Eusebio-Cope, A. and Suzuki, N. 2008. A host factor involved in hypovirus symptom expression in the chestnut blight fungus, Cryphonectria parasitica. J. Virol. 82:740-754. https://doi.org/10.1128/JVI.02015-07
  6. Hayashi, M. T., Takahashi, T. S., Nakagawa, T., Nakayama, J. and Masukata, H. 2009. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat. Cell Biol. 11:357-362. https://doi.org/10.1038/ncb1845
  7. Kwon, S. J., Lim, W. S., Park, S. H., Park, M. R. and Kim, K. H. 2007. Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus-DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex-like viruses. Mol. Cells 23:304-315.
  8. Kwon, S. J., Cho, S. Y., Lee, K. M., Yu, J., Son, M. and Kim, K. H. 2009. Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res. 144:96-106. https://doi.org/10.1016/j.virusres.2009.04.004
  9. Lee, K. M., Cho, W. K., Yu, J., Son, M., Choi, H., Min, K., Lee, Y. W. and Kim, K. H. 2014. A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. PLoS One 9: e100989. https://doi.org/10.1371/journal.pone.0100989
  10. Liu, N., Fan, F., Qiu, D. and Jiang, L. 2013. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Fungal. Genet. Biol. 58-59:42-52. https://doi.org/10.1016/j.fgb.2013.08.010
  11. Park, S. M., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S. and Kim, D. H. 2004. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51:1267-1277. https://doi.org/10.1111/j.1365-2958.2004.03919.x
  12. Purnapatre, K., Piccirillo, S., Schneider, B. L. and Honigberg, S. M. 2002. The CLN3/SWI6/CLN2 pathway and SNF1 act sequentially to regulate meiotic initiation in Saccharomyces cerevisiae. Genes Cells 7:675-691. https://doi.org/10.1046/j.1365-2443.2002.00551.x
  13. Son, H., Seo, Y. S., Min, K., Park, A. R., Lee, J., Jin, J. M., Lin, Y., Cao, P., Hong, S. Y., Kim, E. K., Lee, S. H., Cho, A., Lee, S., Kim, M. G., Kim, Y., Kim, J. E., Kim, J. C., Choi, G. J., Yun, S. H., Lim, J. Y., Kim, M., Lee, Y. H., Choi, Y. D. and Lee, Y. W. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog. 7:e1002310. https://doi.org/10.1371/journal.ppat.1002310
  14. Son, M., Lee, K. M., Yu, J., Kang, M., Park, J. M., Kwon, S. J. and Kim, K. H. 2013. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1. J. Virol. 87:10356-10367. https://doi.org/10.1128/JVI.01026-13
  15. Son, M., Yu, J. and Kim, K. H. 2015. Five questions about mycoviruses. PLoS Pathog. 11:e1005172. https://doi.org/10.1371/journal.ppat.1005172
  16. Wu, J., Liu, Y., Lv, W., Yue, X., Que, Y., Yang, N., Zhang, Z., Ma, Z., Talbot, N. J. and Wang, Z. 2015. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genet. Biol. 83:92-102. https://doi.org/10.1016/j.fgb.2015.08.012
  17. Yu, F., Gu, Q., Yun, Y., Yin, Y., Xu, J. R., Shim, W. B. and Ma, Z. 2014. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol. 203:219-232. https://doi.org/10.1111/nph.12776
  18. Yu J., Lee, K. M., Son, M. and Kim, K. H. 2015. Effects of the deletion and over-expression of Fusarium graminearum gene FgHal2 on host response to mycovirus Fusarium graminearum virus 1. Mol. Plant Pathol. 16:641-652. https://doi.org/10.1111/mpp.12221
  19. Yun, Y., Liu, Z., Zhang, J., Shim, W. B., Chen, Y. and Ma, Z. 2014. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Environ. Microbiol. 16:2023-2037. https://doi.org/10.1111/1462-2920.12334

Cited by

  1. vol.92, pp.17, 2018, https://doi.org/10.1128/JVI.00326-18