DOI QR코드

DOI QR Code

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities

광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구

  • 김지윤 (이화여자대학교 과학교육과) ;
  • 최의규 (한국광해관리공단 광해기술연구소) ;
  • 백승한 (한국광해관리공단 광해기술연구소) ;
  • 최혜빈 (이화여자대학교 과학교육과) ;
  • 이정훈 (이화여자대학교 과학교육과)
  • Received : 2016.06.03
  • Accepted : 2016.07.11
  • Published : 2016.08.30

Abstract

There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

낙동강에는 휴 폐광산의 관리 소홀로 인하여 광미, 광산폐기물, 침출수 등이 산재되어 있으며 여름철 집중 호우기 동안 이 같은 오염물들이 수계에 유입될 수 있다. 경상북도 봉화군 석포면에서 시작해 안동시 안동호 상류에 이르기까지 낙동강에 영향을 미칠 수 있는 광산은 총 105개로 금속광산 60개, 비금속 광산 45개에 달한다. 이를 확인하기 위해서 1년 동안 건기와 우기에 퇴적물, 배출수, 하천수를 채취하였다. 광산의 활동으로 낙동강 주변에 전반적으로 심각한 수준의 중금속 오염을 보이는 퇴적층이 산재해 있음을 확인했다(101개의 시료채취 지점 중 중금속농도를 바탕으로 한 오염지수 10 이상 지점 68개). 하천수 분석 결과에서는 승부, 삼보, 옥방, 장군 광산 등의 지류 시료에서 비소와 카드뮴 농도가 우기 때 증가하는 양상을 보였으며 광산의 배출수와 광미 퇴적층으로 인한 오염이 우려된다. 그러나 광미 퇴적층과 하천수의 화학조성만으로는 오염의 근원이 되는 광산의 유입정도를 분리해 내기 어렵고 이러한 문제는 광해 방지를 어렵게 한다. 광산 활동으로 인한 오염을 효과적으로 방지하기 위해서는 각 오염근원으로부터의 유입비를 분리해 낼 수 있어야 하는데, 그 방법으로써 안정동위원소를 사용하고 이를 통한 오염원 추적 분석 기술 개발에 대한 연구가 필요하다.

Keywords

References

  1. Budakoglu, M. and Pratt, L.M., 2005, Sulfur-isotope distribution and contamination related to the Balya Pb-Zn mine in Turkey. Environmental Geology, 47, 773-781. https://doi.org/10.1007/s00254-004-1202-1
  2. Choi, S.W., Lee, C.H., and Jeong, H.C., 1998, Environmental geochemistry of soils and groundwater in the KongjudaeKeum mine area, Korea. Journal of the Korean Earth Science Society, 19(5), 549-564.
  3. Crounse, R.G., Pories, W.J., Bray, J.T., and Mauer, R.L., 1983, Geochemistry and man; health and disease. In Thornton, I. (ed.), Applied environmental geochemistry, Academic Press, London, UK, 267-330.
  4. Dold, B. and Fontbote, L., 2002, A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, nothern Chile. Chemical Geology, 189(3), 135-163. https://doi.org/10.1016/S0009-2541(02)00044-X
  5. Jung, M.C., 2001, Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine. Applied Geochemistry, 16(11), 1369-1375. https://doi.org/10.1016/S0883-2927(01)00040-3
  6. Jung, M.C. and Thornton, I., 1997, Environmental contamination and seasonal variation of metals in soil, plants and water in the paddy field around a Pb-Zn mine in Korea. Science of the Total Environment, 198(2), 105-121. https://doi.org/10.1016/S0048-9697(97)05434-X
  7. Kang, H., Kim, Y.H., Jang Y.D., and Kim, J.J., 2013, Studies on characterization of soil pollution and variations of heavy metal contents after water-tailings reaction from Yonghwa mine. Journal of Soil and Groundwater Environment, 18(1), 85-93. https://doi.org/10.7857/JSGE.2013.18.1.085
  8. Kim, M.J., Kim, Y.K., Park, K.S., and Jeon, S.H., 2008, Mineralogical changes caused by the weathering of tailings deposited of the riverside of the Nakdong river, Bonghwa, Korea. Journal of the Mineralogical Society of Korea, 21(4), 331-339.
  9. Kloke, A., 1979, Contents of arsenic, cadmium, chromium, fluorine, lead, mercury and nickel in plants grown on contaminated soil. United nations ECE symposium, Geneva.
  10. Lee, C.G., Chon, H.T., and Jung, M.C., 2001, Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 16(11), 1377-1386. https://doi.org/10.1016/S0883-2927(01)00038-5
  11. Lee, C.H., Lee, H.K., Lee, J.C., and Koh, Y.K., 1999, Hydrogeochemistry and contaminatiom of meteoric qater at Narim mine creek, Korea. Economic and Environmental Geology, 31(4), 297-310.
  12. Lee, P.K., Kang, M.J., Park, S.W., and Youm, S.J., 2003, The effects of pH control on the leaching behavior of heavy metals within tailings and contaminated soils: Seobo and Chengyang tungsten mine areas. Economic and Environmental Geology, 36(6), 469-480.
  13. Nimick, D.A., and Moore, J.N., 1991, Prediction of water-soluble metal concentrations in fluvially deposited tailings sediments, Upper Clark Fork Valley, Montana, USA. Applied Geochemistry, 6(6), 635-646. https://doi.org/10.1016/0883-2927(91)90074-Y
  14. Park, C.Y., Cho, K.J., and Kim, S.K., 2005, The production and geochemistry of evaporite from the acid mine drainage. Journal of the Korean Earth Science Society, 26(6), 524-540.
  15. Park, C.Y., Kim, H.N., and Jeong, Y.J., 1998, Geochemical dispersion of heavy metal in diorite and around soils at the Kwangyang mine. Journal of the Korean Earth Science Sosiety, 19(1), 35-55.
  16. Plant, J. and Raiswell, R., 1983, Principles of environmental geochemistry. In Thorton, I. (ed.), Applied environmental geochemistry, Academic Press, London, UK, 1-39.
  17. Rock, L. and Mayer, B., 2009, Identifying the influence of geology, land use, and anthropogenic activities on riverine sulfate on a watershed scale by combining hydrometric, chemical and isotopic approaches. Chemical Geology, 262(2009), 121-130. https://doi.org/10.1016/j.chemgeo.2009.01.002
  18. Tostevin, R., Crew, D., Hale, R.V., and Vaughan, M., 2016, Sources of environmental sulfur in the groundwater system, southern New Zealand. Applied Geochemistry, 70(2016), 1-16. https://doi.org/10.1016/j.apgeochem.2016.05.005