DOI QR코드

DOI QR Code

이정 사질 퇴적물의 층면구조 형성 속도에 대한 수조 실험 예비 연구

A Preliminary Study of Flume Experiments on the Flow Velocity for Initial Formation of Bedforms on Bimodal Sand-sized Sediments

  • 김현우 (공주대학교 지질환경과학과) ;
  • 최수지 (공주대학교 지질환경과학과) ;
  • 최지수 (공주대학교 지질환경과학과) ;
  • 권유진 (공주대학교 지질환경과학과) ;
  • 이상철 (공주대학교 지질환경과학과) ;
  • 곽창환 (서울국제학교) ;
  • 권이균 (공주대학교 지질환경과학과)
  • Kim, Hyun Woo (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Choi, Su Ji (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Choi, Ji Soo (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Kwon, Yoo Jin (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Lee, Sang Cheol (Department of Geo-Environmental Sciences, Kongju National University) ;
  • Kwak, Chang Hwan (Seoul International School) ;
  • Kwon, Yi Kyun (Department of Geo-Environmental Sciences, Kongju National University)
  • 투고 : 2016.06.09
  • 심사 : 2016.08.24
  • 발행 : 2016.08.30

초록

층면구조 안정성 다이어그램은 층면구조가 주어진 입도와 유속에서 나타나는 층면구조의 모양과 크기를 지시한다. 이 다이어그램은 대부분 수조실험에 의해 획득한 실험 데이터를 기반으로 작성되었다. 일반적으로, 수조실험은 입자의 크기와 유속사이의 관계를 이해하기 위해 분급이 좋고 단일입도의 분포를 보이는 퇴적물을 이용하여 수행되었다. 이 다이어그램에 의하면, 세립사와 중립사 퇴적물 표면에서 유속이 빨라지면서, 평행층 에서 연흔이 형성되기 시작한다. 이 연구의 목적은 층면구조 안정성 다이어그램의 결과가 실험을 통하여 잘 재현되는지를 확인하고, 분급이 좋은 퇴적물과 달리 분급이 불량한 경우인 이정 입도 분포를 보이는 사질 퇴적물에서도 잘 재현되는지 확인하는 것이다. 본 연구 실험 결과는 2D 연흔이나 3D 연흔 층면구조가 형성되기 위해서, 분급이 불량한 퇴적물의 경우에, 분급이 좋은 퇴적물보다 더 높은 유체의 유속과 전단응력이 필요하다는 것을 보여주고 있다. 탄산염 퇴적물은 수력학적 분급작용이 활발하지 않으며, 퇴적물의 구성이 알로켐과 기질로 이루어지는 이정 입도 분포를 보이는 퇴적물로서 일반적으로 분급이 불량한 특징을 가지고 있다. 따라서, 실험의 결과는 탄산염 퇴적물에서 층면구조 형성을 위해 쇄설성 퇴적환경의 퇴적물 보다 더 높은 유속이 필요할 수 있음을 제안하고 있다. 분급이 불량한 퇴적물 입자가 침식되어 이동기 위해 더 높은 에너지와 유속이 필요하다는 것은 분급 효과, 마찰 효과, 안정성 효과, 갑옷 효과 등이 복합적으로 작용한 결과로 설명될 수 있을 것이다. 본 연구는 예비적 고찰로서, 이어지는 연구를 통해 이러한 현상을 과학적으로 설명하고 입도와 층면구조 형성의 상관성을 보다 정교하게 규명하고자 한다.

The bedform stability diagram indicates the shape and size of bedforms that will occur to a given grain size and flow velocity. The diagram has been constructed from experimental data which have been mostly acquired by flume experiments. Generally, the flume experiments have been performed on well sorted sediments with unimodal grain size distribution, in order to understand relationship between grain size and flow velocity. According to the diagram, a ripple structure initiates to be formed from lower flow regime flat bed, as the flow velocity increases on the surface of fine-sand or medium-sand sediments. This study aims to verify that the experimental result of bedform stability diagram will be reproduced in our flume experimental systems, and also to confirm that the result is consistent not only on well-sorted sand sediments but also on poorly-sorted sand sediments with bimodal grain size distribution. The experimental results in this study show that initiation of 2D or 3D ripple structure on poorly-sorted sand sediments requires higher flow velocity and shear stress than those for initiation of the structure on well-sorted sand sediments. In general, carbonate sediments are characterized by poor sorting due to inactive hydraulic sorting and bimodal grain size distribution with allochems and matrices. The results suggest that the carbonate depositional system possibly need a higher flow velocity for initial formation of 2D or 3D bedform structures. The reason might be the fact that pulling off and lifting of a grain in poorly sorted sediments require more energy due to sorting, friction, stabilization, armour effects, and their complex interaction. This preliminary study warrants additional experiments under various conditions and more accurate analysis on the relationship between formation of bedforms and grain size distribution.

키워드

참고문헌

  1. Allen, P.A., 1997, Earth surface processes. Blackwell Science, Oxford, UK, 403 p.
  2. Ashely, G.M., 1990, Classification of large-scale subaqueous bedform: a new look at an old problem. Journal of Sedimentary Research, 60, 160-172. https://doi.org/10.2110/jsr.60.160
  3. Buffington, J.M. and Montgomery D.R., 1997, A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resources Research, 33(8), 1993-2029. https://doi.org/10.1029/96WR03190
  4. Cheng, N.S., 2002, Exponential formula for bedload transport. Journal of Hydraulic Engineering, 128(10), 942-946. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(942)
  5. Coco, G., Murray, A,B., Green, M,O., Thieler, E.R., and Hume, T.M., 2007, Sorted bedforms as self-organized patterns: 2. complex forcing scenarios. Journal of Geophysical Research: Earth Surface, 112, F03016.
  6. Gerhard, B. Karin, R., Conrad, A., and Katrin, H., 2013, On the stabilizing influence of silt on sand beds. Journal of Sedimentary Research, 83, 691-703. https://doi.org/10.2110/jsr.2013.57
  7. Bartzke, G. and Huhn, K., 2015, A conceptual model of pore-space blockage in mixed sediments using a new numerical approach, with implications for sediment bed stabilization. Geo-Marine Letters, 35(3), 189-202. https://doi.org/10.1007/s00367-015-0399-1
  8. Kirchner, J.W., Dietrich, W.E., Iseya, F., and Ikeda, H., 1990, The variability of critical shear stress, friction angle, and grain protrusion in water worked sediments. Sedimentology, 37, 647-672. https://doi.org/10.1111/j.1365-3091.1990.tb00627.x
  9. Ikhsan, C., Rahajo, A., and Legono, D. 2014, The formation of static armour layer. International Journal of Civil & Environmental Engineering, 14, 19-23.
  10. Mueller, E. and Batalla, R., 2009, The effects of bimodality character of riverbed texture on bedload model parameterisation for the ribera salada river. Hydraulic Engineering, 134, 1430-1439.
  11. Nichols, G., 2009, Sedimentology and stratigraphy. Wiley-Blackwell, India, UK, 419 p.
  12. Paintal, A.S., 1971, Concept of critical shear stress in loose boundary open channels. Journal of Hydraulic Research, 9, 91-113. https://doi.org/10.1080/00221687109500339
  13. Perlin, A., Moum, J. N., Klymak, J. M., Levine, M. D., Boyd, T., and Kosro, P. M. 2005, A modified lawofthewall applied to oceanic bottom boundary layers. Journal of Geophysical Research, Oceans, 110 (C10)
  14. Perret, E. and Herrero, A., 2015, Incipient motion of a bimodal mixture of gravel and silt: a laboratory experimental study. IAHR World Congress, 36, 1-11.
  15. Press, F. and Siever, R., 1986, Earth. W. H. Freeman, New York, USA, 317 p.
  16. Solari, L. and Parker, G., 2000, The curious case of mobility reversal in sediment mixture. Hydraulic Engineering, 126, 185-197. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:3(185)
  17. Southard, J. B., 1989, Bed load transport of mixed size sediment: Fractional transport rates, bed forms, and the development of a coarse bed surface layer. Water Resources Research, 25, 1629-1641. https://doi.org/10.1029/WR025i007p01629
  18. Southard, J. B., 1991, Experimental determination of bedform stability. Annual Review of Earth and Planetary Sciences, 19, 423-455. https://doi.org/10.1146/annurev.ea.19.050191.002231
  19. Wilcock, P.R., 1993, Critical shear stress of natural sediments. Journal of Hydraulic Engineering, 119(4), 491-505. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:4(491)
  20. Wilcock, P.R,. 1996, Estimating local bed shear stress from velocity observations. Water Resources Research, 32(11), 3361-3366. https://doi.org/10.1029/96WR02277
  21. Wilcock P.R., 1998, Two-fraction model of initial sediment motion in gravel-bed rivers. Science, 280, 410-412. https://doi.org/10.1126/science.280.5362.410
  22. Vanoyen, T. and Blondeaux, P., 2008, Grain sorting effects on the formation of sand waves. Marine and Dune Dynamics, United Kingdom, 249-256.
  23. Yamaguchi, N. and Sekiguchi, H., 2007, Ripple formation and grain sorting with multiple sized sand: a report of the preliminary wave-flume experimentation. 京都大防災究所年報, B=Disaster Prevention Research Institute Annuals, B, 50, 661-670.