DOI QR코드

DOI QR Code

Distribution of Wave Forces at Points on a Vertical Structure of Semi-Infinite Breakwater Considering Diffraction

회절을 고려한 반무한방파제 형식의 직립구조물에 작용하는 지점별 파력 분포

  • Jung, Jae-Sang (Rural Research Institute, Korea Rural Community Corporation) ;
  • Lee, Changhoon (Department of Civil and Environmental Engineering, Sejong University) ;
  • Cho, Yong-Sik (Department of Civil and Environmental Engineering, Hanyang University)
  • 정재상 (한국농어촌공사 농어촌연구원) ;
  • 이창훈 (세종대학교 건설환경공학과) ;
  • 조용식 (한양대학교 건설환경공학과)
  • Received : 2016.04.27
  • Accepted : 2016.08.26
  • Published : 2016.08.31

Abstract

In this study, we investigated wave force distribution at points on a vertical structure of semi-infinite breakwater considering diffraction. Wave forces of monochromatic and random waves on a vertical structure are studied considering diffractions in front and lee side of the breakwater for non-breaking wave condition. We selected width of breakwater are 0 for reference condition. In monochromatic wave case, relative wave force becomes 0 on the head of the breakwater by acting incident wave force and diffracting wave force simultaneously and oscillating patterns of relative wave force occurs based on 1.0 as distance from the head increases. Relative wave force of monochromatic waves decreases as incident wave angle increases. Relative wave force of random waves is defined by using ratio of root mean square and wave force spectrum in this study. The case considering random phase of each wave components are compared to the case which don't consider random phase and both results are almost similar. Relative wave force of random waves is also 0 near the head of the breakwater likewise monochromatic wave. Oscillating pattern of relative wave force of random waves becomes relatively weaker for composition of each wave components as distance from the head increases.

본 연구에서는 회절을 고려하여 반무한방파제 형식의 직립구조물에 작용하는 지점별 파력 분포를 검토하였다. 비쇄파 조건에서 직립구조물에 작용하는 규칙파 및 불규칙파의 파력에 대해 방파제 전, 후면의 회절을 모두 고려하여 연구하였다. 방파제의 폭이 0인 조건을 비교 대상의 기준 조건으로 채택하였다. 규칙파의 경우 방파제 두부(head of breakwater)에서는 전후면의 입사파 및 회절파가 동시에 작용하여 상대 파력이 0이 되었으며, 두부에서 멀어지면 상대 파력 1.0을 중심으로 진동하는 패턴이 나타났다. 또한 경사입사각이 증가할 경우 규칙파의 상대 파력은 감소하는 경향을 보였다. 본 연구에서는 제곱평균의 제곱근비와 파력 스펙트럼을 이용하여 불규칙파의 상대 파력을 정의하였다. 각 성분파가 갖는 임의의 위상을 고려한 경우와 고려하지 않은 경우를 비교하였으며, 그 결과는 거의 동일하게 나타났다. 불규칙파의 경우 방파제 두부 근처에서 규칙파와 마찬가지로 상대 파력이 0으로 나타났으며, 두부에서 멀어질 때에는 다양한 성분파의 합성에 의해 상대 파력 1.0을 기준으로 진동하는 패턴이 비교적 약하게 나타났다.

Keywords

References

  1. Burcharth, H.F., and Liu, Z. (1999). Force reduction of short crested non-breaking waves on caissons, MASTIII PROVERBS, Probabilistic Design Tools for Vertical Breakwaters, MAS3-CT95-0041, IIa, Chapter 4.3, 1-26.
  2. Franco, C., van der Meer J.W., and Franco, L. (1996). Multidirectional wave loads on vertical breakwaters. Coastal Engineering (1996). ASCE, 2008-2021.
  3. Goda, Y. (1974). New wave pressure formulae for composite breakwater, Proc. 14th Int. Conf. Coastal Eng., Copenhagen, 1702-1720.
  4. Goda, Y. (2000). Random Seas and Design of Maritime Structures, World Scientific.
  5. Hasselmann, K. et al. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydrographisches Zeitschrift, 8(12). 1-95 (in German).
  6. Hur, D.-S., Yeom, G.-S., and Bae, K.-S. (2006). The phase difference effects on 3-D structure of wave pressure acting on a composite breakwater, J. KSCE, 26(5B), 563-572 (in Korean).
  7. Jung, J.-S., Lee, C., and Cho, Y.-S. (2011). Effects of directional asymmetry of random wave loads on long structures, The 6th Iint. Conf. on Asian and Pacific coasts, Hong Kong, 1695-1702.
  8. Jung, J.-S., Lee, C., and Cho, Y.-S. (2015). Prediction of wave force on a long structure of semi-infinite breakwater type considering diffraction, J. Korean Society of Coastal and Ocean Engineers, 27(6), 424-433 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.6.424
  9. Lee, C., Jung J.-S. and Haller, M.C. (2010). Asymmetry in directional spreading function of random waves due to refraction, ASCE J. Waterway, Port, Coast. Ocean Eng., 136(1), 1-9. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000006
  10. Lee, C., Kim, M.K. and Cho Y.J. (2005). Wave diffraction and multi-reflection around breakwaters, J. Korean Society of Coastal and Ocean Engineers, 17(4), 232-242 (in Korean).
  11. Lee, C. and Yoon, S.B. (2007). Internal generation of waves on an arc in a rectangular grid system, Coastal Eng., 54, 357-368. https://doi.org/10.1016/j.coastaleng.2006.11.004
  12. Madrigal, B.G. (1998). Wave obliquity and multidirectionality effect on composite vertical breakwater. Case of Study: Las Palmas, Gran Canaria.
  13. Ministry of Oceans and Fisheries, Coastal and Fishery Port Design Manual (2015) (in Korean).
  14. Penney, W.G., and Price, A.T. (1952). The diffraction theory of sea waves by breakwaters and the shelter afforded by breakwaters, Philos. Trans. R. Soc. London, A(244), 236-253. https://doi.org/10.1098/rsta.1952.0003
  15. Radder, A.C. and Dingemans, M.W. (1985). Canonical equations for almost periodic, weakly nonlinear gravity waves, Wave Motion, 7, 473-485. https://doi.org/10.1016/0165-2125(85)90021-6
  16. Tanimoto, K., Moto, K., Ishizuka, S., and Goda, Y. (1976). An investigation on design wave force formulae of compsite-type breakwater, Proc. 23rd Japanese Conf. Coastal Eng. 11-16 (inJapanese).