Abstract
This paper presents an experimental investigation to visualize cross-sectional two-phase flow structure and identify liquid-gas interface for condensation of steam at a low mass flux in a slightly inclined tube using the axial-viewing technique, which permits to look directly into flow during condensation of steam. In this technique, two-phase flow is viewed along the axis of a pipe by locating a high-speed video camera in front of a viewer that is fitted at the outlet of the pipe. A short section of the pipe is illuminated and is recorded through the viewer, which is kept free of liquid by mildly introducing air. Experiments were conducted in a pipe of 19.05 mm in inner diameter at atmospheric pressure. Cross-sectional two-phase flow structure is obtained at a steam mass flux of $2.62kg/m^2s$ as a function of steam quality in the range from 0.5 to 0.9. The results show that stratified-wavy flow is a unique flow pattern observed in the scope of the present study. Condensate film thickness, stratification angle and void fraction were measured from the obtained flow structure images. Finally, heat transfer coefficient was calculated using the measurement data and discussed in comparison with existing correlations.