DOI QR코드

DOI QR Code

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo (Department of Mechanical and Aerospace Engineering, Princeton University) ;
  • Belmiloud, Naser (SCREEN SPE Germany GmbH) ;
  • Mertens, Paul W. (IMEC)
  • Received : 2016.07.27
  • Accepted : 2016.08.19
  • Published : 2016.08.31

Abstract

We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

Keywords

References

  1. Y. O. Popov, Physical Review E 71, 036313 (2005). https://doi.org/10.1103/PhysRevE.71.036313
  2. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997). https://doi.org/10.1038/39827
  3. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Physical Review E 62, 756 (2000). https://doi.org/10.1103/PhysRevE.62.756
  4. A. G. MarIn, H. Gelderblom, D. Lohse, and J. H. Snoeijer, Physical Review Letters 107, 085502 (2011). https://doi.org/10.1103/PhysRevLett.107.085502
  5. P. J. Yunker, T. Still, M. A. Lohr, and A. Yodh, Nature 476, 308 (2011). https://doi.org/10.1038/nature10344
  6. H. Y. Erbil, G. McHale, and M. Newton, Langmuir 18, 2636 (2002). https://doi.org/10.1021/la011470p
  7. H. Masoud and J. D. Felske, Physics of Fluids 21, 042102 (2009). https://doi.org/10.1063/1.3112002
  8. A. Petsi and V. Burganos, Physical Review E 78, 036324 (2008). https://doi.org/10.1103/PhysRevE.78.036324
  9. U. Thiele and E. Knobloch, New Journal of Physics 8, 313 (2006). https://doi.org/10.1088/1367-2630/8/12/313
  10. J. K. Park, J. Ryu, B. C. Koo, S. Lee, and K. H. Kang, Soft Matter 8, 11889 (2012). https://doi.org/10.1039/c2sm26559a
  11. R. Bhardwaj, X. Fang, and D. Attinger, New Journal of Physics 11, 075020 (2009). https://doi.org/10.1088/1367-2630/11/7/075020
  12. D. Orejon, K. Sefiane, and M. E. Shanahan, Langmuir 27, 12834 (2011). https://doi.org/10.1021/la2026736
  13. K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, Measurement Science and Technology 15, 1104 (2004). https://doi.org/10.1088/0957-0233/15/6/009
  14. T. K. Pradhan and P. K. Panigrahi, Experiments in Fluids 56, 1 (2015). https://doi.org/10.1007/s00348-014-1876-4
  15. H. Kim, S. Grosse, G. E. Elsinga, and J. Westerweel, Experiments in Fluids 51, 395 (2011). https://doi.org/10.1007/s00348-011-1053-y
  16. J. A. Howarter and J. P. Youngblood, Langmuir 22, 11142 (2006). https://doi.org/10.1021/la061240g
  17. J. A. Howarter and J. P. Youngblood, Macromolecules 40, 1128 (2007). https://doi.org/10.1021/ma062028m
  18. D. K. Schwartz, Annual Review of Physical Chemistry 52, 107 (2001). https://doi.org/10.1146/annurev.physchem.52.1.107
  19. X. Zhao and R. Kopelman, The Journal of Physical Chemistry 100, 11014 (1996). https://doi.org/10.1021/jp9526657
  20. K.-I. Iimura, Y. Nakajima, and T. Kato, Thin Solid Films 379, 230 (2000). https://doi.org/10.1016/S0040-6090(00)01544-3
  21. A. Fellah, N. Belmiloud, R. G. Haverkamp, Y. Hemar, D. Otter, and M. A. Williams, Carbohydrate Polymers 87, 806 (2012). https://doi.org/10.1016/j.carbpol.2011.08.073
  22. R. J. Adrian and J. Westerweel, Particle image velocimetry, Cambridge University Press, (2010).
  23. B. Wieneke, Experiments in Fluids 45, 549 (2008). https://doi.org/10.1007/s00348-008-0521-5
  24. N. Shahidzadeh-Bonn, S. Rafai, A. Azouni, and D. Bonn, Journal of Fluid Mechanics 549, 307 (2006). https://doi.org/10.1017/S0022112005008190
  25. B. Weon, J. Je, and C. Poulard, AIP Advances 1, 012102(2011). https://doi.org/10.1063/1.3554333
  26. E. Detrich, W. Sander, W. V. Claas, H. Kevin, K. E. Stefan, J. W. Z. Harold, and L. Detlef, Journal of Fluid Mechanics 794, 45-67 (2016). https://doi.org/10.1017/jfm.2016.158
  27. W. Den, H. Bai, and Y. Kang, Journal of The Electro-chemical Society 153, G149 (2006). https://doi.org/10.1149/1.2147286
  28. H. Hu and R. G. Larson, The Journal of Physical Chemistry B 110, 7090 (2006). https://doi.org/10.1021/jp0609232
  29. G. E. Elsinga, TUDelft PhD thesis (2008).
  30. D. Mampallil, D. van den Ende, and F. Mugele, Applied Physics Letters 99, 154102 (2011). https://doi.org/10.1063/1.3645621
  31. H. Lee, S. Yun, S. H. Ko, and K. H. Kang, Biomicrofluidics 3, 044113 (2009). https://doi.org/10.1063/1.3274511
  32. H. Hu and R. G. Larson, Langmuir 21, 3963 (2005). https://doi.org/10.1021/la047528s