DOI QR코드

DOI QR Code

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes

고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화

  • Received : 2015.07.12
  • Accepted : 2016.07.10
  • Published : 2016.09.01

Abstract

In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

태양열 가열을 도입한 해양온도차발전용 열교환기(증발기와 응축기)설계 최적화가 수행되었다. 출력은 100kW이고 작동유체는 R134a이며 고성능 상용튜브를 사용하였다. 열전달면적과 압력강하는 관수의 증가와 관통로수의 감소에 따라 서로 상반되는 경향이 존재하므로 이를 해결하기 위하여, 설비투자비에 관련되는 열전달면적과 압력강하에 관련되는 운전비용 최소화를 고려한 두 목적함수를 갖는 유전자 알고리즘(GA)을 이용하여 다목적설계최적화를 수행하였다. 설계최적화 결과, 구현 가능한 최적의 열전달면적 및 압력강하의 조합들이 적정한 관수 및 관통로 수에 대하여 존재하였다. 도출된 증발기와 응축기의 Pareto 선들은 설계자들에게 재정적인 면을 고려하여 선택할 수 있도록 넓은 범위의 최적해를 제공하였다. 또한, 총열전달면적 중 응축기의 열전달면적이 증발기 쪽보다 크게 나타났다.

Keywords

References

  1. Rajagopalan, K. and Nihous, G. C., 2013, "Estimates of Global Ocean Thermal Energy Conversion (OTEC) Resources using an Ocean General Circulation Model," Renewable Energy, Vol. 50, pp. 532-540. https://doi.org/10.1016/j.renene.2012.07.014
  2. Berger, L. R. and Berger, J. A., 1986, "Countermeasures to Microbiofouling in Simulated Ocean Thermal-Energy Conversion Heat-Exchangers with Surface and Deep Ocean Waters in Hawaii," Applied and Environmental Microbiology, Vol. 51, pp. 1186-1198.
  3. Meegahapola, L., Udawatta, L. and Witharana, S., 2007, "The Ocean Thermal Energy Conversion Strategies and Analysis of Current Challenges," Proceeding of Second International Conference on Industrial and Information Systems (ICIIS 2007), Sri Lanka.
  4. Ahmadi, P., Dincer, I. and Rosen, M. A., 2013, "Energy and Exergy Analyses of Hydrogen Production via Solar-boosted Ocean Thermal Energy Conversion and PEM Electrolysis," International Journal of Hydrogen Energy, Vol. 38, pp. 1795-1805. https://doi.org/10.1016/j.ijhydene.2012.11.025
  5. Yeh, R. H., Su, T. Z. and Yang, M. S., 2005, "Maximum Output of an OTEC Power Plant," Ocean Engineering, Vol. 32, pp. 685-700. https://doi.org/10.1016/j.oceaneng.2004.08.011
  6. Sun, F. M., Ikegami, Y., Jia, B. and Arima, H., 2012, "Optimization Design and Exergy Analysis of Organic Rankine Cycle in Ocean Thermal Energy Conversion," Applied Ocean Research, Vol. 35, pp. 38-46. https://doi.org/10.1016/j.apor.2011.12.006
  7. Yang, M. H. and Yeh, R. H., 2014, "Analysis of Optimization in an OTEC Plant Using Organic Rankine Cycle," Renewable Energy, Vol. 68, pp. 25-34. https://doi.org/10.1016/j.renene.2014.01.029
  8. Yamada, N., Hoshi, A. and Ikegami, Y., 2009, "Performance Simulation of Solar-boosted Ocean Thermal Energy Conversion Plant," Renewable Energy, Vol. 34, pp. 1752-1758. https://doi.org/10.1016/j.renene.2008.12.028
  9. Wang, T., Ding, L., Gu, C. and Yang, B., 2008, "Performance Analysis and Improvement for CCOTEC system," Journal of Mechanical Science and Technology, Vol. 22, pp. 1977-1983. https://doi.org/10.1007/s12206-008-0742-9
  10. Nguyen, V. H. and Lee, G. S., 2013, "Performance Investigation of Solar-heating Ocean Thermal Energy Conversion (SH-OTEC) in Korea," Trans. Korean Soc. Mech. Eng. B., Vol. 37, pp. 43-49. https://doi.org/10.3795/KSME-B.2013.37.1.043
  11. Ozcelik, Y., 2007, "Exergetic Optimization of Shell and Tube Heat Exchangers using a Genetic Based Algorithm," Applied Thermal Engineering, Vol. 27, pp. 1849-1856. https://doi.org/10.1016/j.applthermaleng.2007.01.007
  12. Selbas, R., Kizilkan, O. and Reppich, M., 2006, "A New Design Approach for Shell-and-tube Heat Exchangers using Genetic Algorithms from Economic Point of View," Chemical Engineering and Processing, Vol. 45, pp. 268-275. https://doi.org/10.1016/j.cep.2005.07.004
  13. Tayal, M. C., Fu, Y. and Diwekar, U. M., 1999, "Optimal Design of Heat Exchangers: a Genetic Algorithm Framework," Industrial Engineering Chemical research, Vol. 38, pp. 456-467. https://doi.org/10.1021/ie980308n
  14. Ponce-Ortega, J. M., Serna-Gonzalez, M. and Jimenez-Gutierrez, A., 2009, "Use of Genetic Algorithms for the Optimal Design of Shell-and-tube Heat Exchangers," Applied Thermal Engineering, Vol. 29, pp. 203-209. https://doi.org/10.1016/j.applthermaleng.2007.06.040
  15. Caputo, A. C., Pelagagge, P. M. and Salini, P., 2008, "Heat Exchanger Design Based on Economic Optimi-zation," Applied Thermal Engineering, Vol. 28, pp. 1151-1159. https://doi.org/10.1016/j.applthermaleng.2007.08.010
  16. Ghosh, S., Ghosh, I., Pratihar, D.K., Maiti, B. and Das, P.K., 2011, "Optimum Stacking Pattern for Multi-stream Plate-fin Heat Exchanger through a Genetic Algorithm," International Journal of Thermal Sciences, Vol. 50, pp. 214-224. https://doi.org/10.1016/j.ijthermalsci.2010.07.003
  17. Allen, B. and Gosselin, L., 2008, "Optimal Geometry and Flow Arrangement for Minimizing the Cost of Shell and Tube Condensers," International Journal of Energy Research, Vol. 32, pp. 958-969. https://doi.org/10.1002/er.1398
  18. Sanaye, S. and Hajabdollahi, H., 2010, "Thermaleconomic Multi-objective Optimization of Plate Fin Heat Exchanger using Genetic Algorithm," Applied Energy, Vol. 87, pp. 1893-1902. https://doi.org/10.1016/j.apenergy.2009.11.016
  19. Hajabdollahi, H., Ahmadi, P. and Dincer, I., 2011, "An Exergy-Based Multi-Objective Optimization of a Heat Recovery Steam Generator (HRSG) in a Combined Cycle Power Plant (CCPP) using Evolutionary Algorithm," International Journal of Green Energy, Vol. 8, pp. 44-64. https://doi.org/10.1080/15435075.2010.529779
  20. Najafi, H., Najafi, B. and Hoseinpoori, P., 2011, "Energy and Cost Optimization of a Plate and Fin Heat Exchanger using Genetic Algorithm," Applied Thermal Engineering, Vol. 31, pp. 1839-1847. https://doi.org/10.1016/j.applthermaleng.2011.02.031
  21. Fettaka, S., Thibault, J. and Gupta, Y., 2013, "Design of Shell-and-tube Heat Exchangers using Multiobjective Optimization," International Journal of Heat and Mass Transfer, Vol. 60, pp. 343-354. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.047
  22. Amini, M. and Bazargan, M., 2014, "Two Objective Optimization in Shell-and-tube Heat Exchanger using Genetic Algorithm," Applied Thermal Engineering, Vol. 69, pp. 278-285. https://doi.org/10.1016/j.applthermaleng.2013.11.034
  23. Klein, S. A., 2013, Engineering Equation Solver (EES), fChart Software Inc.
  24. High Performance Tube, Inc., available from: www.highperformancetube.com
  25. Wolverine Tube, Inc., available from: www.wlv.com
  26. Costa, A. L. H. and Queiroz, E. M., 2008, "Design Optimization of Shell-and-tube Heat Exchangers," Applied Thermal Engineering, Vol. 28, pp. 1798-1805. https://doi.org/10.1016/j.applthermaleng.2007.11.009
  27. Kalac, S. and Liu, H., 1998, Heat Exchangers: Selection, Rating and Thermal Design, CRC Press LLC, Florida.
  28. Serth, R. W., 2007. Process Heat Transfer Principles and Applications, Elsevier Ltd., Texas.
  29. Cavallini, A., Censi, G., Col, D. D., Doretti, L., Longo, G.A., Rossetto, L. and Zilio, C., 2003, "Condensation inside and outside Smooth and Enhanced Tubes-a Review of Recent Research," International Journal of Refrigeration, Vol. 26, pp. 373-392. https://doi.org/10.1016/S0140-7007(02)00150-0
  30. Holland, J. H., 1975, "Adaptation in Natural and Artificial Systems," University of Michigan Press, Ann Arbor.
  31. Guo, D., Liu, M., Wang, J. and Xie, L., 2014, "Optimization in Plate-fin Safety Structure of Heat Exchanger using Genetic and Monte Carlo Algorithm," Applied Thermal Engineering, Vol. 70, pp. 342-349.
  32. Konak, A., Coit, D. W. and Smith, A. E., 2006, "Multi-objective Optimization using Genetic Algorithms: A Tutorial," Reliability Engineering and System Safety, Vol. 91, pp. 992-1007. https://doi.org/10.1016/j.ress.2005.11.018
  33. Nguyen, M. P. and Lee, G. S., 2011, "Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 12, pp. 1293-1300. https://doi.org/10.3795/KSME-B.2011.35.12.1293
  34. Kim, S., Yang, J. and Choi, S., 2013, "Design Evaluation of Heavy Duty Heat Exchangers for Compact Steam Boilers," J. of the Korean Soc. of Comb., Vol. 18, No. 2, pp. 23-31. https://doi.org/10.15231/jksc.2013.18.2.023
  35. Wong, J. Y. Q., Sharma, S. and Rangaiah, G. P., 2016, "Design of Shell-and-tube Heat Exchangers for Multiple Objectives using Elitist Non-dominated Sorting Genetic Algorithm with Termination Criteria," Applied Thermal Engineering, Vol. 93, pp. 888-899. https://doi.org/10.1016/j.applthermaleng.2015.10.055