DOI QR코드

DOI QR Code

Preparation and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Random Copolymer-Polyolefin Pore-filling Separators with Metal Ion Trap Capability for Li-ion Secondary Battery

리튬이온 이차전지용 금속이온 선택성 술폰화 폴리아릴렌에테르술폰 공중합체-폴리올레핀 함침격리막 제조 및 특성

  • Jeong, Yeon Tae (Future Technology Research Laboratory, Korea Electric Power Research Institute) ;
  • Ahn, Juhee (Dept. of Energy Eng., Dankook University) ;
  • Lee, Chang Hyun (Dept. of Energy Eng., Dankook University)
  • 정연태 (한전전력연구원 창의미래연구소) ;
  • 안주희 (단국대학교 융합기술대학 에너지공학과) ;
  • 이창현 (단국대학교 융합기술대학 에너지공학과)
  • Received : 2016.08.24
  • Accepted : 2016.08.29
  • Published : 2016.08.31

Abstract

Lithium ion secondary battery (LISB) is an energy conversion system operated via charging-discharging cycle based on Lithium ion migration. LISB has a lot of advantages such as high energy density, low self-discharge rate, and a relatively high lifetime. Recently, increasing demands of electric vehicles have been encouraging the development of LISB with high capacity. Unfortunately, it causes some critical safety issues. It includes dendrite formation on negative electrode, resulting in electric shortage problems and battery explosion. Also, the elevated temperatures occurred during the LISB operation induces thermal shrinkage of polyolefin (e.g., polyethylene and polypropylene) separators. Consequently, the low thermal stability leads to decay of LISB performances and the reduction of lifetime. In this study, sulfonated poly (arylene ether sulfone) (SPAES) random copolymers were used as key materials to prepare polyolefin pore-filling separator. The resulting separators were evaluated in the term of metal ion chelation capability associated with dendrite formation, $Li^+$ ion conductivity and thermal durability.

리튬이온 이차전지는 리튬이온이 이동하면서 전기화학적 충방전사이클을 완성하는 에너지변환장치를 의미한다. 리튬이온 이차전지는 높은 에너지밀도와 낮은 자가방전률, 상대적으로 긴 수명주기 등 다양한 장점을 갖는다. 최근 전기차 수요증가는 고용량 리튬이온 이차전지 개발을 촉진하고 있으나 음극에서의 dendrite 형성으로 인한 전기적 단락 현상과 전지 폭발 문제와 같은 심각한 안전문제를 야기한다. 또한, 리튬이온 이차전지 구동시 상승된 온도에서 폴리올레핀계열(예 : 폴리에틸렌과 폴리프로필렌) 격리막의 열수축 문제가 발생한다. 이와 같이 낮은 열 안정성은 리튬이온 이차전지의 성능과 수명의 감소로 이어진다. 본 연구에서는 폴리올레핀계열 함침격리막 제조를 위한 중요한 소재로서 술폰화 폴리아릴렌에테르술폰 랜덤 공중합체를 사용하였으며, 제조된 격리막을 이용하여 dendrite 형성과 관련된 금속이온 흡착 능력과 리튬이온전도성, 열적 내구성이 평가되었다.

Keywords

References

  1. S. Megahed and B. Scrosati, "Lithium-ion rechargeable batteries", J. Power Sources, 51, 79 (1994). https://doi.org/10.1016/0378-7753(94)01956-8
  2. Y. Nishi, "Lithium ion secondary batteries; past 10 years and the future", J. Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
  3. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, "Thermal runaway caused fire and explosion of lithium ion battery", J. Power Sources, 208, 210 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
  4. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with high power and high capacity for rechargeable lithium batteries", Science, 311, 977 (2006). https://doi.org/10.1126/science.1122152
  5. J. Vetter, P. Novak, M. Wagner, C. Veit, K. C. Moller, J. Besenhard, M. Winter, M. Wohlfahrt- Mehrens, C. Vogler, and A. Hammouche, "Ageing mechanisms in lithium-ion batteries", J. Power Sources, 147, 269 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.006
  6. J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries", J. Power Sources, 195, 939 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  7. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, "Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries", J. Power Sources, 165, 491 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.025
  8. Y. Wang and G. Cao, "Developments in nanostructured cathode materials for high performance lithium-ion batteries", Adv. Mater., 20, 2251 (2008). https://doi.org/10.1002/adma.200702242
  9. B. Scrosati, "Recent advances in lithium ion battery materials", Electrochim. Acta, 45, 2461 (2000). https://doi.org/10.1016/S0013-4686(00)00333-9
  10. M. S. Whittingham, "Lithium batteries and cathode materials", Chem. Rev., 104, 4271 (2004). https://doi.org/10.1021/cr020731c
  11. C. Zhan, J. Lu, A. J. Kropf, T. Wu, A. N. Jansen, Y. K. Sun, X. Qiu, and K. Amine, "Mn (II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems", Nat. Commun., 4, 2437 (2013). https://doi.org/10.1038/ncomms3437
  12. S. Komaba, N. Kumagai, and Y. Kataoka, "Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries", Electrochim. Acta, 47, 1229 (2002). https://doi.org/10.1016/S0013-4686(01)00847-7
  13. J. M. Kim, C. Kim, S. Yoo, J. H. Kim, J. H. Kim, J. M. Lim, S. Park, and S. Y. Lee, "Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes", J. Mater. Chem. A, 3, 10687 (2015). https://doi.org/10.1039/C5TA02445E
  14. C. H. Lee, K. S. Lee, O. Lane, J. E. McGrath, Y. Chen, S. Wi, S. Y. Lee, and Y. M. Lee, "Solvent-assisted thermal annealing of disulfonated poly (arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells", RSC Adv., 2, 1025 (2012). https://doi.org/10.1039/C1RA00681A
  15. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly (arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  16. M. Sumner, W. Harrison, R. Weyers, Y. Kim, J. McGrath, J. Riffle, A. Brink, and M. Brink, "Novel proton conducting sulfonated poly (arylene ether) copolymers containing aromatic nitriles", J. Membr. Sci., 239, 199 (2004). https://doi.org/10.1016/j.memsci.2004.03.031
  17. Y. Li, F. Wang, J. Yang, D. Liu, A. Roy, S. Case, J. Lesko, and J. E. McGrath, "Synthesis and characterization of controlled molecular weight disulfonated poly (arylene ether sulfone) copolymers and their applications to proton exchange membranes", Polymer, 47, 4210 (2006). https://doi.org/10.1016/j.polymer.2006.03.003
  18. Y. Li, R. A. VanHouten, A. E. Brink, and J. E. McGrath, "Purity characterization of 3, 3'-disulfonated-4, 4'-dichlorodiphenyl sulfone (SDCDPS) monomer by UV-vis spectroscopy", Polymer, 49, 3014 (2008). https://doi.org/10.1016/j.polymer.2008.04.043
  19. M. Sankir, V. Bhanu, W. Harrison, H. Ghassemi, K. Wiles, T. Glass, A. Brink, M. Brink, and J. McGrath, "Synthesis and characterization of 3, 3'- disulfonated 4, 4'-dichlorodiphenyl sulfone (SDCDPS) monomer for proton exchange membranes (PEM) in fuel cell applications", J. Appl. Polym. Sci., 100, 4595 (2006). https://doi.org/10.1002/app.22803
  20. G. H. Li, C. H. Lee, Y. M. Lee, and C. G. Cho, "Preparation of poly (vinyl phosphate-b-styrene) copolymers and its blend with PPO as proton exchange membrane for DMFC applications", Solid State Ion., 177, 1083 (2006). https://doi.org/10.1016/j.ssi.2006.03.003
  21. T. Yamaguchi, F. Miyata, and S. I. Nakao, "Polymer electrolyte membranes with a pore filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  22. Y. M. Lee and B. Oh, "The role of microporous separator in lithium ion secondary battery", Membr. J., 7, 123 (1997).
  23. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and characterization of microporous PVdF membrane for Li-ion rechargeable battery", Membr. J., 17, 233 (2007).
  24. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, H. O. Yoo, J. M. Kim, M. S. Seo, and S. Y. Nam, "Preparation and characterization of PVdF-HFP microporous membranes for Li-ion rechargeable battery", Membr. J., 17, 359 (2007).