DOI QR코드

DOI QR Code

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies

귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-

  • Received : 2016.07.08
  • Accepted : 2016.08.02
  • Published : 2016.08.31

Abstract

The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

본 연구의 목적은 과학 문제 해결을 위한 귀추적 사고 과정에서 모델의 역할을 이론 연구와 경험 연구를 통해 조사하는 것이었다. 이 연구는 지구과학 탐구 학습 프로그램을 개발하기 위한 설계 기반 연구의 맥락에서 이루어졌으며, 본 논문에서는 그 중 지질학 분야의 귀추적 탐구 활동을 재설계하는 과정을 중점적으로 다루었다. 이론 연구에서는 지구과학에 특징적인 연구 방법으로서 귀추와 모델링을 관련지어 연구한 대표적인 연구자들의 저작들을 집중적으로 고찰하였다. 그 결과로, 증거, 자원 모델, 설명 모델의 관계를 나타낸 모델링 중심의 귀추적 추론에 대한 잠정적인 도식을 제안하였다. 이 도식을 지질학 문제를 해결하는 전문가들의 사고 과정을 분석한 경험 연구를 통해 정교화 하였다. 새로운 도식에는 결정적 증거, 결정적 자원 모델, 과학적으로 타당한 설명 모델의 역할이 포함되었다. 이와 더불어 모델링 중심의 귀추적 탐구 수업에서 학생들의 사고 과정을 지원할 수 있는 교수법적인 시사점을 도출하였다.

Keywords

References

  1. Ahn, Y., & Cho, W. S. (2012). Reflection on a geological fieldwork lesson for rock observation. In J. G. Sung (2012). Science teacher throwing away a textbook 2 (pp. 59-93). Busan: Fun Encounter.
  2. Ault, C. R. Jr. (1998). Criteria of excellence for geological inquiry: The necessity of ambiguity. Journal of Research in Science Teaching, 35(2), 189-212. https://doi.org/10.1002/(SICI)1098-2736(199802)35:2<189::AID-TEA8>3.0.CO;2-O
  3. Ault, C. R. Jr., & Dodick, J. (2010). Tracking the footprints puzzle: The problematic persistence of science-as-process in teaching the nature and culture of science. Science Education, 94(6), 1092-1122. https://doi.org/10.1002/sce.20398
  4. Barab, S., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1-14. https://doi.org/10.1207/s15327809jls1301_1
  5. Clement, J. J., Cecilia, M., & Oviedo, N. (2003). Abduction and analogy in scientific model construction. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Philadelphia, PA.
  6. Clement, J. J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht, The Netherlands: Springer.
  7. Clement, J. J. (2013). Roles for explanatory models and analogies in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 412-446). New York: Routledge.
  8. Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15-42. https://doi.org/10.1207/s15327809jls1301_2
  9. Engelhardt, W. von, & Zimmermann, J. (1982). Theory of earth science (translated by L. Fisher). Cambridge, UK: Cambridge University Press.
  10. Ford, D. J. (2005). The challenges of observing geologically: Third graders' descriptions of rock and mineral properties. Science Education, 89, 276-295. https://doi.org/10.1002/sce.20049
  11. Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. GSA Bulletin, 107(8), 960-968. https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2
  12. Gilbert, S. W., & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press.
  13. Gobert, J. D., & Clement, J. J. (1999). Effect of student-generated diagram versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 26(1), 39-53.
  14. Gray, R. (2014). The distinction between experimental and historical sciences as a framework for improving classroom inquiry. Science Education, 98(2), 327-341. https://doi.org/10.1002/sce.21098
  15. Haig, B. D. (2005). An abductive theory of scientific method. Psychological Methods, 10(4), 371-388. https://doi.org/10.1037/1082-989X.10.4.371
  16. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing.
  17. Hanson, N. R. (1958). Patterns of discovery. London: Cambridge University Press.
  18. Kitts, D. B. (1977). The structure of geology. Dallas, TX: Southern Methodist University Press.
  19. Kleinhans, M. G., Buskes, C. J. J., & de Regt, H. W. (2005). Terra incognita: Explanation and reduction in earth science. International Studies in the Philosophy of Science, 19(3), 289-317. https://doi.org/10.1080/02698590500462356
  20. Lee, Y.-S., Kim, S.-S., & Lee, H.-L. (2013). Pre-service elementary teacher knowledge understanding and teaching-learning type about 'stratum and rock'. Journal of Korean Society of Earth Science Education, 6(1), 69-77.
  21. Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive Development, 23, 512-520. https://doi.org/10.1016/j.cogdev.2008.09.001
  22. Maeng, S., Park, M., Lee, J.-A., & Kim, C.-J. (2007). A case study of middle school students' abductive inference during a geological field excursion. Journal of the Korean Association for Science Education, 27(9), 818-831.
  23. Magnani, L. (1999). Model-based creative abduction. In L. Magnani, N. J. Nersessian & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 219-238). New York: Kluwer Academic/Plenum Publishers.
  24. Magnani, L. (2001). Abduction, reason, and science: Process of discovery and explanation. New York: Kluwer Academic/Plenum Publishers.
  25. Magnani, L. (2002). Epistemic mediators and model-based discovery in science. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 305-329). New York: Kluwer Academic/Plenum Publishers.
  26. Magnani, L. (2004). Model-based and manipulative abduction in science. Foundation of Science, 9, 219-247.
  27. Magnani, L. (2006). Multimodal abduction: External semiotic anchors and hybrid representations. Logic Journal of the IGPL, 14(2), 107-136. https://doi.org/10.1093/jigpal/jzk009
  28. Magnani, L. (2014). Understanding abduction: Inference, perception, and instinct. In L. Magnani (Ed.), Model-based reasoning in science and technology: Theoretical and cognitive issues (pp. 173-205). Berlin: Springer.
  29. Miall, A. D., & Miall, C. E. (2004). Empiricism and model-building in stratigraphy: Around the hermeneutic circle in the pursuit of stratigraphic correlation. Stratigraphy, 1(1), 27-46.
  30. Moon, B., Lee, G., & Kim, H. (2009). The characteristics of observing and inferring of elementary gifted students in inquiry activities of the strata. Journal of Korean Elementary Science Education, 28(4), 476-486.
  31. National Research Council (1996). National Science Education Standards. Washington, DC: The National Academies Press.
  32. Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5-22). New York: Kluwer Academic/Plenum Publishers.
  33. Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: The MIT Press.
  34. Nersessian, N. J. (2013). Mental modeling in conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 395-411). New York: Routledge.
  35. NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.
  36. Oh, P. S. (2006). Rule-inferring strategies for abductive reasoning in the process of solving an earth-environmental problem. Journal of the Korean Association for Science Education, 26(4), 546-558.
  37. Oh, P. S. (2007a). Analysis of scientific models in the earth domain of the 10th grade science textbooks. Journal of the Korean Earth Science Society, 28(4), 393-404. https://doi.org/10.5467/JKESS.2007.28.4.393
  38. Oh, P. S. (2007b). Analysis of the manners of using scientific models in secondary earth science classrooms: With a focus on lessons in the domains of atmospheric and oceanic earth sciences. Journal of the Korean Association for Science Education, 27(7), 675-692.
  39. Oh, P. S. (2008). Adopting the abductive inquiry model (AIM) into undergraduate earth science laboratories. In V. Eriksson (Ed.), Science education in the 21st century (pp. 263-277). New York: Nova.
  40. Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. International Journal of Science Education, 32(4), pp. 541-560. https://doi.org/10.1080/09500690903104457
  41. Oh, P. S. (2011). Characteristics of abductive inquiry in earth science: An undergraduate case study. Science Education, 95, 409-430. https://doi.org/10.1002/sce.20424
  42. Oh, P. S. (2015). A theoretical review and trial application of the 'resources-based view' (RBV) as an alternative cognitive theory. Journal of the Korean Association for Science Education, 35(6), 971-984. https://doi.org/10.14697/jkase.2015.35.6.0971
  43. Oh, P. S., & Kim, C.-J. (2005). A theoretical study on abduction as an inquiry method in earth science. Journal of the Korean Association for Science Education, 25(5), 610-623.
  44. Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130. https://doi.org/10.1080/09500693.2010.502191
  45. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 77-196.
  46. Raia, F. (2005). Students' understanding of complex dynamic systems. Journal of Geoscience Education, 53(3), 297-308. https://doi.org/10.5408/1089-9995-53.3.297
  47. Rivet, A. E., & Kastens, K. A. (2012). Developing a construct-based assessment to examine students' analogical reasoning around physical models in earth science. Journal of Research in Science Teaching, 49(6), 713-743. https://doi.org/10.1002/tea.21029
  48. Thagard, P. (2010). How brains make mental models. In L. Magnani, W. Carnielli, & C. Pizzi (Ed.), Model-based reasoning in science and technology: Abduction, logic, and computational discovery (pp. 447-461). Berlin: Springer.
  49. The Design-Based Research Collective (2015). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/0013189X032001005
  50. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585. https://doi.org/10.1016/0010-0285(92)90018-W
  51. Wee, S.-M., Kwak, J.-S., Cho, H., & Kim, H.-J. (2008). The analysis of the teachers' and students' views about the difficulties within teaching and learning activity on geology units in elementary school science. Journal of Korean Elementary Science Education, 27(4), 420-436.

Cited by

  1. 귀추적 추론 모형을 적용한 초등 과학 수업의 입자 개념 형성 효과 vol.37, pp.1, 2016, https://doi.org/10.14697/jkase.2017.37.1.0025
  2. 과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식 vol.37, pp.1, 2016, https://doi.org/10.14697/jkase.2017.37.1.0143
  3. 야외 지질학 탐구 요소 추출 및 지질 답사 교육 문헌 분석 vol.37, pp.3, 2016, https://doi.org/10.14697/jkase.2017.37.3.465
  4. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.539
  5. 지구과학 문제 해결을 위한 귀추적 추론에서 결정적 증거와 결정적 자원 모델의 역할과 중요성 vol.41, pp.3, 2017, https://doi.org/10.21796/jse.2017.41.3.426
  6. 지구과학의 탐구 방법으로서 '복수 작업가설의 방법'의 특징에 관한 탐색적 연구 vol.39, pp.5, 2016, https://doi.org/10.5467/jkess.2018.39.5.501
  7. Features of Modeling-Based Abductive Reasoning as a Disciplinary Practice of Inquiry in Earth Science : Cases of Novice Students Solving a Geological Problem vol.28, pp.6, 2016, https://doi.org/10.1007/s11191-019-00058-w
  8. 핵심 질문 중심으로 본 국어과 평가의이론적 모형 연구-읽기 선택형 평가를 중심으로- vol.121, pp.None, 2016, https://doi.org/10.15734/koed..121.201912.243
  9. 문제의 구성을 강조한 프로그램에서 나타난 탐구 문제와 과학적 추론의 관련성 탐색 -삼투 현상 탐구 활동을 중심으로- vol.40, pp.1, 2016, https://doi.org/10.14697/jkase.2020.40.1.77
  10. Analysis of Abduction in Mathematics Problem Posing and Solving vol.30, pp.0, 2020, https://doi.org/10.29275/jerm.2020.02.30.1.89