DOI QR코드

DOI QR Code

1-D Microstructure Evolution of Electrostatic Sprayed Thermosetting Phenol-formaldehyde Resin Coating

정전분무법으로 제작된 열경화성 Phenol-formaldehyde resin 코팅층의 1차원적 미세구조 형성 메카니즘

  • Kim, Baek Hyun (Department of Materials Engineering, Korea Aerospace University) ;
  • Bae, Hyun Jeong (Department of Materials Engineering, Korea Aerospace University) ;
  • Goh, Yumin (Department of Materials Engineering, Korea Aerospace University) ;
  • Kwon, Do-Kyun (Department of Materials Engineering, Korea Aerospace University)
  • 김백현 (한국항공대학교 항공재료공학과) ;
  • 배현정 (한국항공대학교 항공재료공학과) ;
  • 고유민 (한국항공대학교 항공재료공학과) ;
  • 권도균 (한국항공대학교 항공재료공학과)
  • Received : 2016.04.18
  • Accepted : 2016.07.29
  • Published : 2016.09.27

Abstract

Microstructure evolutions of thermosetting resin coating layers fabricated by electrostatic spray deposition (ESD) at various processing conditions were investigated. Two different typical polymer systems, a thermosetting phenol-formaldehyde resin and a thermoplastic polyvinylpyrrolidone (PVP), were employed for a comparative study. Precursor solutions of the phenol-formaldehyde resin and of the PVP were electro-sprayed on heated silicon substrates. Fundamental differences in the thermomechanical properties of the polymers resulted in distinct ways of microstructure evolution of the electro-sprayed polymer films. For the thermosetting polymer, phenol-formaldehyde resin, vertically aligned micro-rod structures developed when it was deposited by ESD under controlled processing conditions. Through extensive microstructure and thermal analyses, it was found that the vertically aligned micro-rod structures of phenol-formaldehyde resin were formed as a result of the rheological behavior of the thermosetting phenol-formaldehyde resin and the preferential landing phenomenon of the ESD method.

Keywords

References

  1. L. H. Baekeland, US Patent 942699 (1909).
  2. L. Pilato, Phenolic Resins: A Century of Progress, p.155, Springer, Berlin (2010).
  3. L. Pilato, React. Funct. Polym., 73, 270 (2013). https://doi.org/10.1016/j.reactfunctpolym.2012.07.008
  4. F. Hshieh and H. D. Beeson, Fire Mater., 21, 41 (1997). https://doi.org/10.1002/(SICI)1099-1018(199701)21:1<41::AID-FAM595>3.0.CO;2-G
  5. B. K. Kandola, L. Krishnan, D. Deli, P. Luangtriratana and J. R. Ebdon, RSC Adv., 5, 33772 (2015). https://doi.org/10.1039/C5RA01813G
  6. E. Fitzer, W. Schafer and S. Yamada, Carbon, 7, 643 (1969). https://doi.org/10.1016/0008-6223(69)90518-1
  7. H. O. Pierson, Handbook of carbon, diamond and fullerenes, p.122, Noyes, Park Ridge, NY (1993).
  8. S. S. Tzeng and Y. G. Chr, Mater. Chem. Phys., 73, 162 (2002). https://doi.org/10.1016/S0254-0584(01)00358-3
  9. S. Xu, Y. Luo, and W. Zhong, Sol. Energy, 85, 2826 (2011). https://doi.org/10.1016/j.solener.2011.08.014
  10. A. Jaworek and A. T. Sobczyk, J. Electrost., 66, 197 (2008). https://doi.org/10.1016/j.elstat.2007.10.001
  11. C. Chen, E. M. Kelder, P. J. J. M. Van der Put, J. Schoonman, J. Mater. Chem., 6, 765 (1996). https://doi.org/10.1039/jm9960600765
  12. R. Neagu, D. Perednis, A. Princivalle and E. Djurado, Chem. Mater., 17, 902 (2005). https://doi.org/10.1021/cm048341p
  13. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim and Z. Ma, An introduction to electrospinning and nanofibers, World Scientific Publishing Co. Pte. Ltd., Singapore (2005).
  14. M. D. P. Buera, G. Levi, M. Karel, Biotechnol. Prog., 8, 144 (1992). https://doi.org/10.1021/bp00014a008
  15. J. C. Dominguez, M. Oliet, M. V. Alonso, E. Rojo and F. Rodriguez, J. Appl. Polym. Sci., 123, 2107 (2012). https://doi.org/10.1002/app.34713
  16. W. I. Lee, A. C. Loos and G. S. Springer, J. Compos. Mater., 16, 510 (1982). https://doi.org/10.1177/002199838201600605