DOI QR코드

DOI QR Code

Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins

  • Won, Yong Sun (Department of Chemical Engineering, Pukyong National University) ;
  • You, Hae-na (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2016.06.16
  • Accepted : 2016.08.23
  • Published : 2016.09.27

Abstract

The characteristics of aqueous lithium recovery by ion exchange were studied using three commercial cation exchange resins: CMP28 (porous type strong acid exchange resin), SCR-B (gel type strong acid exchange resin) and WK60L (porous type weak acid exchange resin). CMP28 was the most effective material for aqueous lithium recovery; its performance was even enhanced by modifying the cation with $K^+$. A comparison to $Na^+$ and $H^+$ form resins demonstrated that the performance enhancement is reciprocally related to the electronegativity of the cation form. Further kinetic and equilibrium isotherm studies with the $K^+$ form CMP28 showed that aqueous lithium recovery by ion exchange was well fitted with the pseudo-second-order rate equation and the Langmuir isotherm. The maximum ion exchange capacity of aqueous lithium recovery was found to be 14.28 mg/g and the optimal pH was in the region of 4-10.

Keywords

References

  1. U. Chon, G. Han, K. Kim and K. H. Kim, J. Korean Inst. Res. Rec., 19, 3 (2010).
  2. A. Kitajou, T. Suzuki, S. Nishihama and K. Yoshizuka, Ars Separatoria Acta, 2, 97 (2003).
  3. S. Zhu, W. He, X. Zhou, X. Zhang and J. Huang, Trans. Nonferrous Met. Soc. China, 22, 2274 (2012). https://doi.org/10.1016/S1003-6326(11)61460-X
  4. Y. S. Kim, G. In and J. M. Choi, Bull. Korean Chem. Soc., 24, 1495 (2003). https://doi.org/10.5012/bkcs.2003.24.10.1495
  5. F. Wang, L. J. Wang, J. S. Li, X. Y. Sun and W. Q. Han, Trans. Nonferrous Met. Soc. China, 19, 740 (2009). https://doi.org/10.1016/S1003-6326(08)60343-X
  6. A. Navarrete-Guijosa, R. Navarrete-Casas, C. Valenzuela-Calahorro, J. D. Lopez-Gonzalez and A. Farcia-Rodriaguez, A., J. Colloid Interface Sci., 264, 60 (2003). https://doi.org/10.1016/S0021-9797(03)00299-6
  7. L. Rafati, A. H. Mahvi, A. R. Asgari and S. S. Hosseini, Int. J. Environ. Sci. Tech., 7, 147 (2010). https://doi.org/10.1007/BF03326126
  8. T. Kobayashi, M. Yoshimoto and K. Nakao, Ind. Eng. Chem. Res., 49, 1652 (2010) https://doi.org/10.1021/ie901543w
  9. B. Alyuz and S. Veli, J. Hazard. Mater., 167, 482 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.006
  10. D. H. Lee and M. G. Lee, J. Environ. Sci. Int., 11, 263 (2002). https://doi.org/10.5322/JES.2002.11.3.263
  11. G. E. Boyd, J. Schubert and A. W. Adamson, J. Am. Chem. Soc., 69, 2818 (1947). https://doi.org/10.1021/ja01203a064
  12. S. Mustafa, K. H. Shah, A. Naeem, T. Ahmad and M. Waseem, Desalination, 264, 108 (2010). https://doi.org/10.1016/j.desal.2010.07.012
  13. K. M. Lee and Y. M. Jo, J. Ind. Eng. Chem., 19, 533 (2008).
  14. J. M. Park, S. K. Kam and M. G. Lee, J. Environ. Sci. Int., 22, 1651 (2013). https://doi.org/10.5322/JESI.2013.22.12.1651
  15. M. G. Lee, S. K. Kam and K. H. Suh, J. Environ. Sci. Int., 21, 623 (2012). https://doi.org/10.5322/JES.2012.21.5.623
  16. M. Y. S. Ho and G. McKay, Process Biochem., 34, 451 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  17. F. Gode and E. Pehlivan, J. Hazard. Mater., B100, 231 (2003).
  18. S. K. Kam, H. N. You and M. G. Lee, J. Environ. Sci. Int., 23, 1143 (2014). https://doi.org/10.5322/JESI.2014.23.6.1143
  19. H. N. You, D. H. Lee and M. G. Lee, Clean Technol., 19, 446 (2013). https://doi.org/10.7464/ksct.2013.19.4.446
  20. Q. H. Zhang, S. Sun, S. Li, H. Jiang and J.-G. Yu, Chem. Eng. Sci., 62, 4869 (2007). https://doi.org/10.1016/j.ces.2007.01.016
  21. A. M. El-Kamash, J. Hazard. Mater., 151, 432 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.009