DOI QR코드

DOI QR Code

Synthesis of K2TiF6:Mn4+ Red Phosphors by a Simple Method and Their Photoluminescence Properties

Mn4+ 이온 활성 K2TiF6 불화물 적색형광체의 합성과 발광특성

  • Kim, Yeon (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Wu, Mihye (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Sungho (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University) ;
  • Jung, Ha-Kyun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 김연 (한국화학연구원 차세대전지소재연구센터) ;
  • 우미혜 (한국화학연구원 차세대전지소재연구센터) ;
  • 최성호 (한국화학연구원 차세대전지소재연구센터) ;
  • 심광보 (한양대학교 신소재공학과) ;
  • 정하균 (한국화학연구원 차세대전지소재연구센터)
  • Received : 2016.05.18
  • Accepted : 2016.08.30
  • Published : 2016.09.27

Abstract

To prepare $Mn^{4+}$-activated $K_2TiF_6$ phosphor, a precipitation method without using hydrofluoric acid (HF) was designed. In the synthetic reaction, to prevent the decomposition of $K_2MnF_6$, which is used as a source of $Mn^{4+}$ activator, $NH_5F_2$ solution was adopted in place of the HF solution. Single phase $K_2TiF_6$:$Mn^{4+}$ phosphors were successfully synthesized through the designed reaction at room temperature. To acquire high luminance of the phosphor, the reaction conditions such as the type and concentration of the reactants were optimized. Also, the optimum content of $Mn^{4+}$ activator was evaluator based on the emission intensity. Photoluminescence properties such as excitation and emission spectrum, decay curve, and temperature dependence of PL intensity were investigated. In order to examine the applicability of this material to a white LED, the electroluminescence property of a pc-WLED fabricated by combining the $K_2TiF_6$:$Mn^{4+}$ phosphor with a 450 nm blue-LED chip was measured.

Keywords

References

  1. S. Nakamura, Science, 17, 956 (1998).
  2. F. K. Yam and Z. Hassan, Microelectron. J., 36, 129 (2005). https://doi.org/10.1016/j.mejo.2004.11.008
  3. Y. D. Huh, Y. S. Cho, Y. Kim and Y. R. Do, Bull. Korean Chem. Soc., 23, 1435 (2002). https://doi.org/10.5012/bkcs.2002.23.10.1435
  4. J. Liu, H. Lian, J. Sun and C. Shi, Chem. Lett., 34, 1340 (2005). https://doi.org/10.1246/cl.2005.1340
  5. Y. Pan, M. Wu and Q. Su, Tail. Phys. Chem. Solid, 65, 845 (2004). https://doi.org/10.1016/j.jpcs.2003.08.018
  6. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, Electrochem. Solid-State Lett., 9, 22 (2006). https://doi.org/10.1149/1.2173192
  7. R. J. Xie, N Hirosaki, T. Suehiro, F. F. Xu and M. Mitomo, Chem. Mater., 18, 5578 (2006). https://doi.org/10.1021/cm061010n
  8. C. Yeh, W. T. Chen, R. S. Liu, S. F. Hu, H. S. Sheu, J. M. Chen and H. T. Hintzen, J. Am. Chem. Soc., 134, 14108 (2012). https://doi.org/10.1021/ja304754b
  9. H. D. Nguyen, C. C. Lin, M. H. Fang and R. S. Liu, Appl. Mater. Interfaces, 7, 10656 (2015). https://doi.org/10.1021/acsami.5b02212
  10. X. Y. Jiang, Z. Chen, S. M. Huang, J. G. Wang and Y. X. Pan, Dalton Trans., 43, 9414 (2014). https://doi.org/10.1039/c4dt00781f
  11. X. Y. Jiang, Y. X. Pan, S. M. Huang, X. A. Chen, J. G. Wang and G. K. Liu, J. Mater. Chem. C, 2, 2301 (2014). https://doi.org/10.1039/c3tc31878h
  12. M. Kim, W. B. Park, B. K, Bang, C. H. Kim and K. S. Sohn, J. Mater. Chem. C, 3, 5484 (2015). https://doi.org/10.1039/C5TC00757G
  13. X. Li, X. Su, P. Liu, J. Liu, Z. Yao, J. Chen, H. Yao, X. Yu and M. Zhan, CrystEngComm., 17, 930 (2015). https://doi.org/10.1039/C4CE01907E
  14. R. Kasa and S. Adachi, J. Electrochem. Soc., 159, 89 (2012).
  15. A. Lazarowska, S. Mahilk, M. Grinberg, C. C. Lin and R. S. Liu, J. Chem. Phys., 143, 134 (2015).
  16. B. E. Yeo. Y. S. Cho and Y. D. Huh, Opt. Mater., 51, 50 (2016). https://doi.org/10.1016/j.optmat.2015.11.014
  17. H. M. Zhu, C. C. Lin, W. Q. Luo, S. T. Shu, Z. G. Liu, Y. S. Liu, J. T. Kong, E. Ma, Y. G. Cao, R. S. Liu and X. Y. Chen, Nat. Commun., 5, 4312 (2014). https://doi.org/10.1038/ncomms5312
  18. E. Kwon, H. A. Lee, D. Kim, J. Lee, S. Lee and H. O. Yoon, J. Soil Groundw. Environ., 20, 65 (2015).
  19. H. Bode, H. Jenssen and F. Bandte, Angew. Chem., 65, 304 (1953). https://doi.org/10.1002/ange.19530651108
  20. J. A. Camargo, Chemosphere, 50, 251 (2003). https://doi.org/10.1016/S0045-6535(02)00498-8
  21. T. Han, T. Lang, J. Wang, M. Tu and L. Peng, RSC Adv., 5, 54 (2015).
  22. T. Takahashi and S. Adachi, J. Electrochem. Soc., 155, 183 (2008).
  23. M. G. Brik and A. M. Srivastava, J. Lumin., 133, 69 (2012).
  24. L. Huang, Y. Zhu, X. Zhang, R. Zou, F. Pan, J. Wang and M. Wu, Chem. Mater., 28, 1495 (2016). https://doi.org/10.1021/acs.chemmater.5b04989
  25. M. Sugawara, S. Y. Choi and D. Wood, IEEE Signal Process Mag., 31, 170 (2014). https://doi.org/10.1109/MSP.2014.2302331