DOI QR코드

DOI QR Code

Anti-Helicobacter pylori Compounds from Polygonum cuspidatum

  • Khalil, Atif Ali Khan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Park, Woo Sung (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Kim, Hye Jin (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Akter, Kazi Marjahan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Ahn, Mi-Jeong (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University)
  • Received : 2016.03.23
  • Accepted : 2016.05.02
  • Published : 2016.09.30

Abstract

Anti-Helicobacter pylori activity guided fractionation led to the isolation of five anthraquinones, two stilbenes and one naphthoquinone from the EtOAc fraction of Polygonum cuspidatum, using silica gel column chromatography, Sephadex-LH20, MPLC and recrystallization. The chemical structures were identified to be physcion (1), emodin (2), anthraglycoside B (3), trans-resveratrol (4), anthraglycoside A (5), polydatin (6), 2-methoxy-6-acetyl-7-methyljuglone (7) and citreorosein (8) by UV, $^1H$-NMR, $^{13}C$-NMR and mass spectrometry. Anti-Helicobacter pylori activity including MIC values of each compound was evaluated. All of the isolates exhibited anti-H. pylori activity of which MIC values were lower than that of a positive control, quercetin. Compounds 2 and 7 showed potent growth inhibitory activity. Especially, a naphthoquinone, compound 7 displayed most potent antibacterial activity with $MIC_{50}$ value of $0.30{\mu}M$ and $MIC_{90}$ value of $0.39{\mu}M$. Although anti-H. pylori activity of this plant was previously reported, this is the first report on that of compounds isolated from this species. From these findings, P. cuspidatum roots or its isolates may be useful for H. pylori infection and further study is needed to elucidate mechanism of action.

Keywords

References

  1. Goodwin, C. S.; Armstrong, J. A.; Chilvers, T.; Peters, M.; Collins, M. D.; Sly, L.; McConnell, W.; Harper, W. E. S. Int. J. Syst. Bacteriol. 1989, 39, 397-405. https://doi.org/10.1099/00207713-39-4-397
  2. Uemura, N.; Okamoto, S.; Yamamoto. S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R. J. N. Engl. J. Med. 2001, 345, 784-789. https://doi.org/10.1056/NEJMoa001999
  3. Boquet, P.; Ricci, V.; Galmiche, A.; Gauthier, N. C. Trends Microbiol. 2003, 11, 410-413. https://doi.org/10.1016/S0966-842X(03)00211-7
  4. Warren, J. R.; Marshall, B. Lancet 1983, 321, 1273-1275. https://doi.org/10.1016/S0140-6736(83)92719-8
  5. Blaser, M. J. EMBO Rep. 2006, 7, 956-960. https://doi.org/10.1038/sj.embor.7400812
  6. Dore, M. P.; Lu, H.; Graham, D. Y. Gut 2016, Epub ahead of print.
  7. Wang, J.; Li, W. T.; Zheng, Y. X.; Zhao, S. S.; Li, N.; Huang, Y.; Zhou, R. R.; Huang, Z. B.; Fan, X. G. Gastroenterol. Res. Pract. 2016, Epub ahead of print.
  8. Malfertheiner, P.; Selgrad, M. Curr. Opin. Gastroenterol. 2014, 30, 589-595. https://doi.org/10.1097/MOG.0000000000000128
  9. Dos Santos, A. A.; Carvalho, A. A. World J. Gastroenterol. 2015, 21, 139-154. https://doi.org/10.3748/wjg.v21.i1.139
  10. Austin, A.; Jegadeesan, M.; Gowrishankar, R. Nat. Prod. Sci. 2003, 9, 1-3.
  11. Arichi, H.; Kimura, Y.; Okuda, H.; Baba, K.; Kozawa, M.; Arichi, S. Chem. Pharm. Bull. 1980, 30, 1766-1770.
  12. Su, P. W.; Yang, C. -H.; Yang, J. -F.; Su, P. Y.; Chuang, L. Y. Molecules 2015, 20, 11119-11130. https://doi.org/10.3390/molecules200611119
  13. Zhang, W. T.; Jia, Y.; Huang, Q. W.; Li, Q.; Bi, K. S. Chromatographia 2007, 66, 685-689. https://doi.org/10.1365/s10337-007-0409-1
  14. Jiangsu New Medical College. Dictionary of Chinese Materia Medica; Science and Technology Press: China, 1977; pp 1329-1331.
  15. Zhang, H.; Li, C.; Kwok, S. T.; Zhang, Q. W.; Chan, S. W. Evid. Based Complement. Alternat. Med. 2013, 208349.
  16. Peng, W.; Qin, R.; Li, X.; Zhou, H. J. Ethnopharmacol. 2013, 148, 729-745. https://doi.org/10.1016/j.jep.2013.05.007
  17. Lin, C. J.; Lin, H. J.; Chen, T. H.; Hsu, Y. A.; Liu, C. S.; Hwang, G. Y.; Wan, L. PLoS One 2015, 10, e0117602. https://doi.org/10.1371/journal.pone.0117602
  18. Lee, C. C.; Chen, Y. T.; Chiu, C. C.; Liao, W. T.; Liu, Y. C.; David Wang, H. M. J. Biosci. Bioeng. 2015, 119, 464-469. https://doi.org/10.1016/j.jbiosc.2014.09.008
  19. Su, P. W.; Yang, C. -H.; Yang, J. -F.; Su, P. Y.; Chuang, L. Y. Molecules 2015, 20, 11119-11130. https://doi.org/10.3390/molecules200611119
  20. Park, W. S.; Bae, J. -Y.; Kim, H. J.; Kim, M. K.; Lee, W. K.; Kang, H. -L.; Baik, S. C.; Lim, K. M.; Lee, M. K.; Ahn, M. -J. Nat. Prod. Sci. 2015, 21, 49-53.
  21. Amin, M.; Anwer, M.; Naz, F.; Mehmood, T.; Saari, N. Molecules 2013, 18, 2135-2149. https://doi.org/10.3390/molecules18022135
  22. Yang, Lu. In Introduction to Natural Product Chemistry: Anthraquinones; Renheng, X. U.; Yang, Y.; Zhao, W. Ed; CRC press; USA, 2012, 10, 189-203.
  23. Chu, X.; Sun, A.; Liu, R. J. Chromatogr. A 2005, 1097, 33-39. https://doi.org/10.1016/j.chroma.2005.08.008
  24. Sivakumar, B.; Murugan, R.; Baskaran, A.; Khadangale, B. P.; Murugan, S.; Senthilkumar, U. P. Sci. Pharm. 2013, 81, 683-695. https://doi.org/10.3797/scipharm.1301-17
  25. Zhang, W., Ye, M., Zhan, J., Chen, Y. and Guo, D. Biotechnol. Lett. 2004, 26, 127-131. https://doi.org/10.1023/B:BILE.0000012890.46665.02
  26. Kimura, Y.; Kozawa, M.; Baba, K.; Hata, K. Planta Med. 1983, 48, 164-168. https://doi.org/10.1055/s-2007-969914
  27. Brown, J. C.; Wang, J.; Kasman, L.; Jiang, X.; Haley-Zitlin, V. J. Appl. Microbiol. 2011, 110, 139-146. https://doi.org/10.1111/j.1365-2672.2010.04870.x
  28. Park, B. S.; Lee, H. K.; Lee, S. E.; Piao, X. L.; Takeoka, G. R.; Wong, R. Y.; Ahn, Y. J.; Kim, J. H. J. Ethnopharmacol. 2006, 105, 255-262. https://doi.org/10.1016/j.jep.2005.11.005
  29. Skouloubris, S.; Djaout, K.; Lamarre, I.; Lambry, J. C.; Anger, K.; Briffotaux, J.; Liebl, U.; de Reuse, H. and Myllykallio, H. Open Biol. 2015, 5, 150015. https://doi.org/10.1098/rsob.150015
  30. Lee, I. -S.; Im, H. G.; Lee, S. Korean J. Food Sci. Technol. 2003, 35, 1182-1187.

Cited by

  1. Escherichia coli modular coculture system for resveratrol glucosides production vol.34, pp.6, 2016, https://doi.org/10.1007/s11274-018-2458-z
  2. Variecolortins A-C, Three Pairs of Spirocyclic Diketopiperazine Enantiomers from the Marine-Derived Fungus Eurotium sp. SCSIO F452 vol.20, pp.15, 2016, https://doi.org/10.1021/acs.orglett.8b01880
  3. Recent advances in chemistry, therapeutic properties and sources of polydatin vol.17, pp.5, 2018, https://doi.org/10.1007/s11101-018-9574-0
  4. A new anti-Helicobacter pylori juglone from Reynoutria japonica vol.42, pp.6, 2019, https://doi.org/10.1007/s12272-019-01160-x
  5. Chemical Constituents of the Stem Bark of Daphne altaica vol.55, pp.6, 2016, https://doi.org/10.1007/s10600-019-02918-x
  6. Comparative Inner Morphological and Chemical Studies on Reynoutria Species in Korea vol.9, pp.2, 2016, https://doi.org/10.3390/plants9020222
  7. Anti-Helicobacter pylori Activity of Compounds Isolated from Fraxinus mandshurica Bark vol.26, pp.2, 2016, https://doi.org/10.20307/nps.2020.26.2.158
  8. Bioactive amides from Polygonum cuspidatum vol.23, pp.3, 2016, https://doi.org/10.1080/10286020.2021.1873298