DOI QR코드

DOI QR Code

Effect of Inorganic Constituents Existing in Empty Fruit Bunch (EFB) on Features of Pyrolysis Products

팜 부산물에 존재하는 무기성분이 급속열분해 생성물의 특성에 미치는 영향

  • Moon, Jaegwan (Department of Forest Sciences, CALS, Seoul National University) ;
  • Lee, Jae Hoon (Department of Forest Sciences, CALS, Seoul National University) ;
  • Hwang, Hyewon (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, In-Gyu (Department of Forest Sciences, CALS, Seoul National University) ;
  • Choi, Joon Weon (Graduate School of International Agricultural Technology, Seoul National University)
  • 문재관 (서울대학교 농업생명과학대학 산림과학부) ;
  • 황혜원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이재훈 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최준원 (서울대학교 국제농업기술대학원)
  • Received : 2016.04.28
  • Accepted : 2016.05.16
  • Published : 2016.09.25

Abstract

In this study, the effect of inorganic constituents on the physicochemical properties of pyrolytic products produced from empty fruit bunch (EFB) by fast pyrolysis were investigated. Inorganic constituents were removed from the EFB by means of washing treatment with hydrofluoric acid (HF) and distilled water (D.I water). Ash content decreased from 6.2 wt% (EFB) to 2.4 wt% (HF-EFB) and 3.5 wt% (D.I-EFB), respectively. As a result of the inorganic component, a quantity of potassium in EFB has showed the highest removal efficiency in both HF and D.I water (HF: 80.3%, D.I water: 72.8%). Fast pyrolysis was performed with demineralized EFB in the fluidized bed reactor under the temperature of $500^{\circ}C$ at the residence time of 1.3 sec. The yield of bio-oil was determined to 57.3 wt% for HF-EFB and 52.1 wt% for D.I-EFB, respectively. Biochar yield decreased whereas yield of non-condensable gas increased with decreasing inorganic content of EFB. Water content decreased from 26.9% (EFB) to 9.9% (HF-EFB) and viscosity increased from 16.1 cSt (EFB) to 334 cSt (HF-EFB).

본 연구에서는 급속열분해 공정 중 팜 부산물(empty fruit bunch: EFB)에 존재하는 무기성분이 급속열분해 산물의 물리화학적 특성에 미치는 영향을 조사하였다. 팜 부산물에 존재하는 무기성분을 제거하기 위해 불산과 증류수를 사용하였으며, 팜 부산물의 회분 함량은 무기성분 제거 전 6.2 wt%에서 2.4 wt% (불산 처리: HF-EFB), 3.5 wt% (증류수 처리: DI-EFB)로 각각 감소하였다. 무기성분 정량 결과 팜 부산물에 다량 존재하고 있던 칼륨이 두 용매 모두에서 가장 높은 제거효율을 나타냈다(불산: 80.3%, 증류수: 78.3%). 무기성분이 제거된 팜 부산물은 유동형 급속열분해 장치를 이용하여(온도조건 $500^{\circ}C$, 체류시간 1.3초) 바이오오일, 바이오탄, 비응축성 가스로 변환시켰다. 바이오오일의 수율은 불산 처리 후 57.3 wt%, 증류수 처리 후 51.3 wt%로 각각 나타났다. 팜 부산물 내 무기성분 함량이 낮을수록 바이오탄의 수율은 감소하였고, 비응축성 가스의 수율은 증가하는 경향을 나타냈다. 바이오오일의 물리화학적 특성 분석결과에 의하면 수분 함량은 무기성분 제거 전 26.9%에서 불산 처리 후 9.9%로 감소한 반면 점도는 16.1 cSt에서 334 cSt로 증가하였다.

Keywords

References

  1. Abdullah, N. 2005. An assessment of pyrolysis for processing empty fruit bunches. Ph.D. Thesis, Aston University, UK.
  2. Agblevor, F., Besler, S., Wiselogel, A. 1995. Fast pyrolysis of stored biomass feedstocks. Energy & Fuels 9(4): 635-640. https://doi.org/10.1021/ef00052a010
  3. Ahn, B., Han, G., Choi, D., Cho, S., Lee, S. 2014. Assessment of the biomass potential recovered from oil palm plantation and crude palm oil production in Indonesia. Journal of the Korean Wood Science and Technology 42(3): 231-243. https://doi.org/10.5658/WOOD.2014.42.3.231
  4. Bridgewater, A.V. 2004. Biomass fast pyrolysis. Thermal Science 8(2): 21-50. https://doi.org/10.2298/TSCI0402021B
  5. Bridgwater, A. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 91(2): 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0
  6. Bridgwater, A.V. 2012. Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy 38(68-94). https://doi.org/10.1016/j.biombioe.2011.01.048
  7. Das, P., Ganesh, A., Wangikar, P. 2004. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass and Bioenergy 27(5): 445-457. https://doi.org/10.1016/j.biombioe.2004.04.002
  8. Demirbas, M.F. 2009. Biorefineries for biofuel upgrading: a critical review. Applied Energy 86(S151-S161). https://doi.org/10.1016/j.apenergy.2009.04.043
  9. Eom, I.Y., Kim, J.Y., Kim, T.S., Lee, S.M., Choi, D., Choi, I.G., Choi, J.W. 2012. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresource technology 104(687-694). https://doi.org/10.1016/j.biortech.2011.10.035
  10. Eom, I.Y., Kim, K.H., Kim, J.Y., Lee, S.M., Yeo, H.M., Choi, I.G., Choi, J.W. 2011. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresource technology 102(3): 3437-3444. https://doi.org/10.1016/j.biortech.2010.10.056
  11. Fahmi, R., Bridgwater, A., Darvell, L., Jones, J., Yates, N., Thain, S., Donnison, I. 2007. The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10): 1560-1569. https://doi.org/10.1016/j.fuel.2006.11.030
  12. Green, A.E. 2004. Process and device for pyrolysis of feedstock, Google Patents.
  13. Hwang, H., Oh, S., Cho, T.S., Choi, I.G., Choi, J.W. 2013. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Bioresource technology 150(359-366). https://doi.org/10.1016/j.biortech.2013.09.132
  14. Jakab, E., Faix, O., Till, F., Szekely, T. 1993. The effect of cations on the thermal decomposition of lignins. Journal of analytical and applied pyrolysis 25(185-194). https://doi.org/10.1016/0165-2370(93)80039-3
  15. Lee, J.H., Moon, J.G., Choi, I.G., Choi, J.W. 2016. Study on the thermochemical degradation features of empty fruit bunch on the function of pyrolysis temperature. Journal of the Korean Wood Science and Technology 44(3): 350-359. https://doi.org/10.5658/WOOD.2016.44.3.350
  16. Mohan, D., Pittman, C.U., Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20(3): 848-889. https://doi.org/10.1021/ef0502397
  17. Mourant, D., Wang, Z., He, M., Wang, X.S., Garcia-Perez, M., Ling, K., Li, C.Z. 2011. Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90(9): 2915-2922. https://doi.org/10.1016/j.fuel.2011.04.033
  18. Nowakowski, D.J., Jones, J.M. 2008. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. Journal of Analytical and Applied Pyrolysis 83(1): 12-25. https://doi.org/10.1016/j.jaap.2008.05.007
  19. Shao, J., Agblevor, F.A. 2015. New Rapid Method for the Determination of Total Acid Number (Tan) of Bio-Oils. American Journal of Biomass and Bioenergy 4(1): 1-9.
  20. Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W. 2010. Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. Journal of Agricultural and Food Chemistry 58(16): 9043-9053. https://doi.org/10.1021/jf1008023
  21. Szabo, P., Varhegyi, G., Till, F., Faix, O. 1996. Thermogravimetric/mass spectrometric characterization of two energy crops, Arundo donax and Miscanthus sinensis. Journal of Analytical and Applied Pyrolysis 36(2): 179-190. https://doi.org/10.1016/0165-2370(96)00931-X
  22. Wang, Z., Wang, F., Cao, J., Wang, J. 2010. Pyrolysis of pine wood in a slowly heating fixed-bed reactor: potassium carbonate versus calcium hydroxide as a catalyst. Fuel Processing Technology 91(8): 942-950. https://doi.org/10.1016/j.fuproc.2009.09.015
  23. Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management 45(5): 651-671. https://doi.org/10.1016/S0196-8904(03)00177-8
  24. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12): 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013