DOI QR코드

DOI QR Code

Electrochemical Characteristics of Supercapacitor Electrode Using MnO2 Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer

이산화망간 전기증착 리그닌 기반 탄소나노섬유 매트를 이용한 슈퍼캐퍼시터용 전극소재의 전기·화학적 특성

  • Kim, Seok Ju (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science) ;
  • Youe, Won-Jae (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science) ;
  • Kim, Yong Sik (Division of Wood chemistry & Microbiology, Department of Forest Resources Utilization, National Institute of Forest Science)
  • 김석주 (국립산림과학원 임산공학부 화학미생물과) ;
  • 유원재 (국립산림과학원 임산공학부 화학미생물과) ;
  • 김용식 (국립산림과학원 임산공학부 화학미생물과)
  • Received : 2016.07.28
  • Accepted : 2016.09.04
  • Published : 2016.09.25

Abstract

The $MnO_2$ electrodeposited on the surface of the carbon nanofiber mats ($MnO_2$-LCNFM) were prepared from electrospun lignin-g-PAN copolymer via heat treatments and subsequent $MnO_2$ electrodeposition method. The resulting $MnO_2$-LCNFM was evaluateed for its potential use in a supercapicitor electrode. The increase of $MnO_2$ electric deposition time was revealed to increase diameter of carbon nanofibers as well as $MnO_2$ content on the surface of carbon nanofiber mats as confirmed by scanning electon microscope (SEM) analysis. The electrochemical properties of $MnO_2$-LCNFM electrodes are evaluated through cyclic voltammetry test. It was shown that $MnO_2$-LCNFM electrode exhibited good electrochemical performance with specific capacitance of $168.0mF{\cdot}cm^{-2}$. The $MnO_2$-LCNFM supercapacitor successfully fabricated using the gel electrolyte ($H_3PO_4$/Polyvinyl alcohol) showed to have the capacitance efficiency of ~90%, and stable behavior during 1,000 charging/discharging cycles.

크라프트 리그닌-polyacrylonitrile (PAN) 그라프트 공중합체의 전기방사 나노섬유매트를 열처리와 이산화망간($MnO_2$) 전기증착법을 이용하여 리그닌 기반 탄소나노섬유 매트(lignin based carbon nanofiber mat, LCNFM)로 제조하고, 슈퍼캐퍼시터용 전극소재(electrode)로의 응용가능성에 대하여 조사하였다. 전기증착 처리시간이 길수록 $MnO_2$-LCNFM 표면의 흡착되는 이산화망간양이 증가하였으며, 이에 따른 탄소나노섬유의 직경과 이산화망간 흡착층이 증가하였다. $MnO_2$-LCNFM 전극의 전기 화학적 특성을 순환전압전류측정(cyclic voltammetry)을 통해 평가하였고, 최대 $168.0mF{\cdot}cm^{-2}$의 비축적용량을 보였다. $MnO_2$-LCNFM를 이용하여 $H_3PO_4$/Polyvinyl alcohol 겔 전해질로 제작한 하이브리드 슈퍼캐퍼시터(hybrid supercapacitor)는 약 90%의 전기용량 효율(capacitance efficiency)을 보였으며, 1,000회의 충 방전 시험에서 안정적인 거동을 나타냈다.

Keywords

References

  1. Bae, J.H., Song, M.K., Park, Y.J., Kim, J.M., Liu, M., Wang, Z.L. 2011. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angewandte Chemie International Edition 50(7): 1683-1687. https://doi.org/10.1002/anie.201006062
  2. Chen P.C., Shen, G., Shi, Y., Chen, H., Zhou, C. 2010. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 4(8): 4403-4411. https://doi.org/10.1021/nn100856y
  3. Choi, B.G., Huh, Y.S., Hong, W.H. 2012, Electrochemical characterization of porous raphene film for supercapacitor electrode. Korean Chemistry Engineering Research 50(4): 754-757. https://doi.org/10.9713/kcer.2012.50.4.754
  4. Dubal, D.P., Gund, G.S., Holze, R., Lokhande, C.D. 2013. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources 242: 687-698. https://doi.org/10.1016/j.jpowsour.2013.05.013
  5. Fengel, D., Wegener, G. 1989. Wood: Chemistry, Ultrastructure, Reactions. Walter De Gruyter, Berlin.New York.
  6. Gao, W., Singh, N., Song, L., Liu, Z., Reddy, A.L.M., Ci, L., Vajtai, R., Zhang, Q., Wei, B., Ajaya, P.M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology 6: 496-499.
  7. Gellerstedt, G., Sjoholm, E., Brodin, I. 2010. The wood-based biorefinery: a source of carbon fiber? The Open Agriculture Journal 4: 119-124. https://doi.org/10.2174/1874331501004010119
  8. Gordobil, O., Egues, I., Llano-Ponte, R., Labidi, J. 2014. Physicochemical properties of PLA lignin blends. Polymer Degradation Stability 108: 330-338. https://doi.org/10.1016/j.polymdegradstab.2014.01.002
  9. Huang, Y.G., Zhang, X.H., Chen, X.B., Wang, H.Q., Che, J.R., Zhong, X.X., Li, Q.Y. 2015. Electrochemical properties of $MnO_2$-deposited $TiO_2$ nanotube arrays 3D composite electrode for supercapacitors. International Journal of Hydrogen Energy 40(41): 14331-14337. https://doi.org/10.1016/j.ijhydene.2015.05.014
  10. Huang, M. Zhang, Y., Li, F., Zhang, L., Ruoff, R.S., Wen, Z., Liu, Q. Self-assembly of mesoporous nanotubes assembled from interwoven ultrthin birnessite-type $MnO_2$ nanosheets for asymmetric supercapacitors. Scientific Reports 4: 3878.
  11. Hur, J.H., Seo, M.K., Kim, H.Y., Kim, I.J., Park, S.J. 2012. Influence of KOH activation on electrochemical performance of coal tar pitch-based activated carbons for supercapacitor. Polymer (Korea) 36(6): 756-760. https://doi.org/10.7317/pk.2012.36.6.756
  12. In, J.H., Kumar, S., Shao-Horn, Y., Barbastathis, G. 2006. Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes. Applied Physics Letters 88: 083104. https://doi.org/10.1063/1.2177639
  13. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., Gruner, G. 2009. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters 9(5): 1872-1876. https://doi.org/10.1021/nl8038579
  14. Kai, Kl., Kobayashi, Y., Yamada, Y., Miyazaki, K., Abe, T., Uchimoto, Y., Kageyama, H. Electochemical characterization of single-layer $MnO_2$ nanosheets as a high-capacitance pseudocapacitor electrode. Journal of Materials Chemistry 22: 14691-14695. https://doi.org/10.1039/c2jm31080e
  15. Kim, K.S., Park, S.J. 2011. Influence of multi-walled carbon nanotubes on the electrochemical performance of graphene nanocomposites for supercapacitor electrodes. Electrochimica Acta 56: 1629-1635. https://doi.org/10.1016/j.electacta.2010.10.043
  16. Kim, S.J., Kim, Y.S. 2013. The analysis of products from base-catalyzed depolymerization of kraft lignin. Journal of the Wood Science and Technology 41(6): 583-593.
  17. Kim, Y.S., Youe, W.J., Kim, S.J., Lee, O.K., Lee, S.S. 2015. Preparation of a Thermoplastic Lignin-Based Biomaterial through Atom Transfer Radical Polymerization. Journal of Wood Chemistry and Technology 35(4): 251-259. https://doi.org/10.1080/02773813.2014.937006
  18. Kleinert, M., Barth, T. 2008. Phenols from lignin. Chemical Engineering & Technol. 31(5): 736-745. https://doi.org/10.1002/ceat.200800073
  19. Li, L., Nan, C., Lu, J., Peng, Q., Li, Y. 2012. ${\alpha}$-$MnO_2$ nanotubes: high surface area and enhanced lithium battery properties. Journal of the Chemical Society, Chemical Communications 48: 6945-6947. https://doi.org/10.1039/c2cc32306k
  20. Li, Z., Mi, Y., Liu, X. Liu, S., Yang, S., Wang, J. 2011. Flexible graphene/$MnO_2$ composite papers for supercapacitor electrodes. Journal of Material Chemistry 21: 14706-14711. https://doi.org/10.1039/c1jm11941a
  21. Ning, X., Wang, X., Yu, X., Zhao, J., Wang, M., Li, H., Yang, Y. 2016. Outstanding supercapacitive properties of Mn-doped $TiO_2$ micro/nanostructure porous film prepared by anodization method. Scientific Reports 6: 22634. https://doi.org/10.1038/srep22634
  22. Norberg, I., Nordstrom, Y. Drougge, R., Gellerstedt, G., Sjoholm, E. 2013. A new method for stabilizing softwood kraft lignin fiber for carbon fiber production. Journal of Applied Polymer Science 128(6): 3824-2830. https://doi.org/10.1002/app.38588
  23. Pandey, M.P., Kim, C.S., 2011. Lignin depolymerization and conversion: a review of thermochemical methods. Chemical Engineering & Technology 34(1): 29-41. https://doi.org/10.1002/ceat.201000270
  24. Pech, D., Brunet, M., Durou, H., Huang, P., Mochalin, V., Gogotsi, Y., Taberna, P.L., Simon, P. 2010. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nature Nanotechnology 5: 651-654. https://doi.org/10.1038/nnano.2010.162
  25. Pei, Z., Zhu, M., Huang, Y., Xue, Q., Geng, H., Zhi, C. 2016. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in $MnO_x/TiO_2$ nanotube composite electrodes. Nano Energy 20: 254-263. https://doi.org/10.1016/j.nanoen.2015.12.025
  26. Qu, Q., Zhu, Y., Gao, X., Wu, Y. 2012. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Advanced Energy Materials 2(8): 950-955. https://doi.org/10.1002/aenm.201200088
  27. Ramados, A., Kim, S.J. 2014. Hierarchically structured $$TiO_2@MnO_2$$ nanowall arrays as potential electrode material for high-performance supercapacitors. International Journal of Hydrogen Energy 39(23): 12201-12212. https://doi.org/10.1016/j.ijhydene.2014.05.118
  28. Simon, P., Gogotsi, Y. 2008. Materials for electrochemical capacitors. Nature Materials 7: 845-854. https://doi.org/10.1038/nmat2297
  29. Xia, X.H., Tu, J.P., Wang, X.L., Gu, C.D., Zhao, X.B. 2011. Mesoporous $Co_3O_4$ monolayer hollow-sphere array as electrochmical pseudocapacitor material. Journal of the Chemical Society, Chemical Communications 47: 5786-5788. https://doi.org/10.1039/c1cc11281c
  30. Yan, D., Guo, Z., Zhu, G., Yu, Z., Xu, H., Yu, A. 2012. $MnO_2$ film with three-dimensional structure prepared by hydrothermal process for supercapacitor. Journal of Power Sources 199: 409-412. https://doi.org/10.1016/j.jpowsour.2011.10.051
  31. Youe, W.J., Lee, S.M., Lee, S.S., Lee, S.H., Kim, Y.S. 2016. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules 82: 497-504. https://doi.org/10.1016/j.ijbiomac.2015.10.022
  32. Yu, G., Hu, L., Liu, N., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z. 2011. Enhancing the supercapacitor performance of graphene/$MnO_2$ nanostructured electrodes by conductive wrapping. Nano Letters 11: 4438-4442. https://doi.org/10.1021/nl2026635
  33. Yu, M., Zhai, E., Lu, X., Chen, X., Xie, S., Li, W., Liang, C., Zhao, W., Zhang, L., Tong, Y. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. Journal of Power Sources 239: 64-71. https://doi.org/10.1016/j.jpowsour.2013.03.083
  34. Yuan, L., Lu, X.H., Xiao, X., Zhai, T., Dai, J., Zhang, F., Hu, B., Wang, X., Gong, L., Chen, J., Hu, C., Tong, Y., Zhou, J., Wang, Z.L. 2012. Flexible solid-state supercapacitors based on carbon nanoparticles/$MnO_2$ nanorods hybrid structure. ACS nano 6(1): 656-661. https://doi.org/10.1021/nn2041279
  35. Zhang, Y.Q., Xia, X.H., Tu, J.P., Mai, Y.J., Shi, S.J., Wang, X.L. Gu, C.D. 2012. Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. Journal of Power Sources 199: 413-417. https://doi.org/10.1016/j.jpowsour.2011.10.065
  36. Zhao, x., Zhang, L., Murali, S., Stoller, M.D., Zhang, Q., Zhu, Y., Ruoff, R.S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 6(6): 5404-5412. https://doi.org/10.1021/nn3012916
  37. Zhou, H., Zhang, Y. 2014. Enhanced electrochemical performance of manganese dioxide spheres deposited on a titanium dioxide nanotube arrays substrate. Journal of Power Sources, 272: 866-879. https://doi.org/10.1016/j.jpowsour.2014.09.030