DOI QR코드

DOI QR Code

A High Accuracy and Fast Hybrid On-Chip Temperature Sensor

고정밀 고속 하이브리드 온 칩 온도센서

  • Kim, Tae-Woo (School of Electrical Engineering and Computer Science, Graduate School of Chungbuk National University) ;
  • Yun, Jin-Guk (Silliconworks) ;
  • Woo, Ki-Chan (School of Electrical Engineering and Computer Science, Graduate School of Chungbuk National University) ;
  • Hwang, Seon-Kwang (School of Electrical Engineering and Computer Science, Graduate School of Chungbuk National University) ;
  • Yang, Byung-Do (Department of Electronics Engineering, Chungbuk National University)
  • Received : 2016.07.25
  • Accepted : 2016.08.04
  • Published : 2016.09.30

Abstract

This paper presents a high accuracy and fast hybrid on-chip temperature sensor. The proposed temperature sensor combines a SAR type temperature sensor with a ${\Sigma}{\Delta}$ type temperature sensor. The SAR type temperature sensor has fast temperature searching time but it has more error than the ${\Sigma}{\Delta}$ type temperature sensor. The ${\Sigma}{\Delta}$ type temperature sensor is accurate but it is slower than the SAR type temperature sensor. The proposed temperature sensor uses both the SAR and ${\Sigma}{\Delta}$ type temperature sensors, so that the proposed temperature sensor has high accuracy and fast temperature searching. Also, the proposed temperature sensor includes a temperature error compensating circuit by storing the temperature errors in a memory circuit after chip fabrication. The proposed temperature sensor was fabricated in 3.3V CMOS $0.35{\mu}m$ process. Its temperature resolution, power consumption, and area are $0.15^{\circ}C$, $540{\mu}W$, and $1.2mm^2$, respectively.

본 논문에서는 고정밀 하이브리드 온 칩 온도센서를 제안하였다. 제안된 온도센서에서는 SAR 타입 온도센서와 ${\Sigma}{\Delta}$타입 온도센서를 혼합하였다. SAR 타입 온도센서는 ${\Sigma}{\Delta}$타입 온도센서 보다 온도를 찾아가는 속도가 빠르지만 오차가 발생할 확률이 높은 단점이 있고, ${\Sigma}{\Delta}$ 타입 온도센서는 SAR 타입 온도센서 보다 정확하지만 속도가 느린 단점이 있다. 제안된 온도 센서는 두개의 온도 측정방법을 혼합하여 고정밀 고속 온도측정이 가능하다. 또한, 칩 제작 후 온도 오차 값을 메모리회로에 저장하여 온도 오차를 보상하는 회로를 포함하여 온도센서를 구현하였다. 제안된 온도센서는 $0.35{\mu}m$ CMOS 공정으로 제작되었다. 온도 정확도, 소비 전력, 칩 면적은 각각 $0.15^{\circ}C$, $540{\mu}W$, $1.2mm^2$였다.

Keywords

References

  1. R. JACOB Baker, CMOS Circuit Design, Layout, and Simulation, 3th ed. New York, NY: WILEY, 2010.
  2. A. Bakker, "CMOS smart temperature sensor an overview," in Proceeding of the IEEE Sensors, vol. 2, pp. 1423-1427, 2002. https://doi.org/10.1109/ICSENS.2002.1037330
  3. A. Bakker and J. H. Huijsing, "A low-cost high-accuracy CMOS smart temperature sensor," in Proceeding of the 25th European Solid-State Circuits Conference, Duisburg, pp. 302-305, 1999.
  4. M. A. P. Pertijs, A. Bakker, and J. H. Huijsing, "A high-accury temperature sensor with second-order curvature correction and digital bus interface," in Proceeding of the IEEE International Symposium on Circuits and Systems, Sydney, pp. 368-371, 2001.
  5. W. M. Sansen, F. Op't Eynde, and M. Steyaert, "A CMOS Temperature Compensated Current Reference," IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 821-824, Jun. 1988. https://doi.org/10.1109/4.324
  6. F. Fiori and P. S Crovetti, "A New Compact Temperature-Compensated CMOS Current Reference," IEEE Transactions on Circuits and Systems II: Express Briefs, vol.52, no. 11, pp. 724-728, Nov. 2005. https://doi.org/10.1109/TCSII.2005.852529
  7. Andre L. Aita and Kofi A. A. Makinwa, "Low-power and accurate operation of a CMOS smart temperature sensor based on bipolar devices and ${\Sigma}$ A/D converter," in Proceeding of Research in Microelectronics and Electronics Conference, Bordeaux, pp. 133-136, 2007.
  8. Chun-Kuan Wu, Wei-Shan chan and Tsung-Hsien Lin, "A 80 kS/s 36 W resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18 m CMOS," in Proceeding of the VLSI Circuits(VLSIC), Honolulu, pp. 222-223, 2011.
  9. Man Kay Law, Amine Bermark, and Howard C. Luong, "A Sub-${\mu}$ W Embedded CMOS Temperature Sensor for RFID Food Monitoring Application," IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1246-1255, Jun. 2010. https://doi.org/10.1109/JSSC.2010.2047456