COMPUTATION OF λ -INVARIANT

JANGHEON OH

ABSTRACT. We give an explicit formula for the computation of Iwa-sawa λ -invariants and an example of the computation using our method.

1. Introduction

Let K be an imaginary quadratic field and p be an odd prime. It is well-known(see [1] and [2]) that there exist non-negative integers $\lambda_p(K)$ and $\nu_p(K)$ such that the exact power of p dividing the class number $h(K_n)$ is equal to $\lambda_p(K)n + \nu_p(K)$ for all sufficiently large n. Here K_n is the n-th layer of the cyclotomic \mathbb{Z}_p -extension of K. Fukuda [3] computed $\lambda_p(K)$ using theorems of Gold and Iwasawa's construction of p-adic L function attached to K. In a paper [6], we gave another method to compute $\lambda_p(K)$ using Sinnott's construction of p-adic L function and Kida's formula. Examples of computation of $\lambda_p(K)$ were given for p=3 in the paper. In this paper, we compute $\lambda_p(K)$ for primes greater than 5 using our method in the paper [6].

2. Computation of λ -invariant

We briefly explain our method in the paper [6] for computing $\lambda_p(K)$. Let Λ be the ring of \mathbb{Z}_p -valued measures on \mathbb{Z}_p . Then Λ is isomorphic to

Received February 11, 2016. Revised June 23, 2016. Accepted July 28, 2016. 2010 Mathematics Subject Classification: 11R23.

Key words and phrases: Iwasawa theory, Iwasawa invariants, p-adic L-function. © The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

the ring $\mathbb{Z}_p[[T-1]]$; explicitly, if $\alpha \in \Lambda$, then the power series associated to α is defined by

$$F(T) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \binom{x}{n} d\alpha (T-1)^n,$$

where $\begin{pmatrix} x \\ n \end{pmatrix} = \frac{x(x-1)\cdots(x-n+1)}{n!}$.

Let c > 1 be an integer prime to p and the conductor of a nontrivial first kind character χ of K, and let $\varepsilon : \mathbb{Z} \to \mathbb{Z}_p$ be the function defined by $\varepsilon(a) = \chi(a)$, if a is not divisible by c, and $\varepsilon(a) = \chi(a)(1-c)$ if a is divisible by c. Define

$$F_{\varepsilon}(T) = \frac{\sum_{a=1}^{f} \varepsilon(a) T^{a}}{1 - T^{f}},$$

where f is any multiple of the minimal period of ε . It is known that $F_{\varepsilon}(T)$ lies in $\mathbb{Z}_p[[T-1]]$. Hence it corresponds to a measure in Λ . Let G(T) be the power series in $\mathbb{Z}_p[[T-1]]$ corresponding to the measure

$$\left(\sum_{\eta\in V}\alpha\circ\eta|_{U}\right)\circ\phi,$$

where V is the group of p-1-th roots of unity in \mathbb{Z}_p , $U=1+p\mathbb{Z}_p$ and ϕ is the isomorphism $\phi: \mathbb{Z}_p \simeq U$ given by $\phi(y) = (1+p)^y$.

If F(T) is an element of $\mathbb{Z}_p[[T-1]]$, write $F(T) = p^{\mu}F_0(T)$, $F_0(T) = \sum_{n\geq 0} a_n(T-1)^n$, where $a_n \not\equiv 0 \mod p$ for some n. Then the λ -invariant of F(T) is defined by

$$\lambda(F(T)) = \min\{n : a_n \not\equiv 0 \mod p\}$$

Sinnott [7] proved that

$$\lambda_p(K) = \lambda(G(T))$$

when $p \geq 5$. Moreover we have Kida's formula [5]:

$$p\lambda(G(T)) = \lambda(\sum_{\eta \in V} \alpha \circ \eta|_U).$$

In the paper [6], we computed the power series Q(T) corresponding to the measure $\sum_{\eta \in V} \alpha \circ \eta|_U$.

THEOREM 1.

$$Q(T) = \sum_{\eta \in V} \frac{\sum_{a \equiv \eta^{-1}}^{f} \varepsilon(a) T^{a\eta}}{1 - T^{f\eta}},$$

where f is a multiple of the minimal period of ε and p.

Proof. See the proof of Theorem 2 in [6].

To compute $\lambda(Q(T))$ explicitly, we need to replace η by an integer i_{η} .

LEMMA 1. Let f(T) be in $\mathbb{Z}_p[[T-1]]$. Then

$$\lambda(f(T)) = \lambda(f(T^{\beta}))$$

for $\beta \in 1 + p\mathbb{Z}_p$.

Proof. Note that if f(T) is the power series associated to a measure α , then $f(T^{\beta})$ is the power series associated to a measure $\alpha \circ \beta^{-1}$. So $f(T^{\beta})$ is in $\mathbb{Z}_p[[T-1]]$. We may write $f(T) = \sum_{n=0}^{\infty} a_n (T-1)^n$. By the definition of λ we see that $a_n \equiv 0 \mod p$ for $n < \lambda(f(T))$ and $a_{\lambda(f(T))} \not\equiv 0 \mod p$. Since

$$T^{\beta} = \sum_{n=0}^{\infty} {\beta \choose n} (T-1)^n \equiv 1 + \beta (T-1) + \text{higher terms}$$

 $\equiv T + \text{higher terms} \pmod{p},$

it is easy to check that $\lambda(f(T)) = \lambda(f(T^{\beta}))$.

For $\eta \in V$, let $1 \leq i_{\eta}, j_{\eta} \leq (p-1)$ be integers such that $\eta \equiv i_{\eta} \mod p$ and $i_{\eta}j_{\eta} \equiv 1 \mod p$. Now we give a formula to compute λ -invariants for imaginary quadratic fields.

THEOREM 2. For primes $p \geq 5$, we have

$$\lambda_p(K) = \frac{1}{p} \lambda \left(\sum_{n \in V} \frac{\sum_{a \equiv j_{\eta}}^{f} \varepsilon(a) T^{ai_{\eta}}}{1 - T^{fi_{\eta}}} \right).$$

Proof.

$$\lambda_p(K) = \lambda(G(T)) = \frac{1}{p}\lambda(\sum_{\eta \in V} \alpha \circ \eta|_U)$$
$$= \frac{1}{p}\lambda(Q(T)) = \frac{1}{p}\lambda(\sum_{\eta \in V} \frac{\sum_{a \equiv j_\eta}^f \varepsilon(a)T^{ai_\eta}}{1 - T^{fi_\eta}})$$

The last equality comes from Lemma 1 with $\beta = \eta^{-1}i_{\eta}$.

We give an example.

EXAMPLE 1. For $K=\mathbb{Q}(\sqrt{-127})$ and p=5, we can choose c=2, f=1270. Moreover, $\varepsilon(a)=(\frac{a}{127})(-1)^{a+1}$, where $(\frac{*}{*})$ is the Jacobi symbol. Hence we have

$$\lambda_{5}(\mathbb{Q}(\sqrt{-127})) = \frac{1}{5}\lambda(\frac{\sum_{a\equiv1(5)}^{1270}\varepsilon(a)T^{a}}{1-T^{1270}} + \frac{\sum_{a\equiv3(5)}^{1270}\varepsilon(a)T^{2a}}{1-T^{2*1270}} + \frac{\sum_{a\equiv2(5)}^{1270}\varepsilon(a)T^{3a}}{1-T^{3*1270}} + \frac{\sum_{a\equiv4(5)}^{1270}\varepsilon(a)T^{4a}}{1-T^{4*1270}}).$$

$$= \frac{1}{5}\lambda((T-1)^{10} + (T-1)^{11} + \text{higher terms (mod p)}) = 2,$$

which agrees with the Table 1 of [4]. We used Maple for the second equality.

References

- [1] K.Iwasawa, On \mathbb{Z}_{ℓ} -extensions of algebraic number fields, Ann. of math. **98** (2) (1973), 246–326.
- [2] B.Ferrero and L.Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. 109 (1979), 377–395.
- [3] T.Fukuda, Iwasawa λ -invariants of imaginary quadratic fields, J. of the College of Industrial Technology, Nihon Univ. **27** (1) (1994), 35–86.
- [4] T.Fukuda, Iwasawa λ -invariants of imaginary quadratic fields, II, J. of the College of Industrial Technology, Nihon Univ. 27 (2) (1994), 83–134.
- [5] Y.Kida, The λ -invariants of p-dic measures on \mathbb{Z}_p and $1+q\mathbb{Z}_p$, Sci. Rep. Kanazawa Univ. **30** (1986), 33–38.
- [6] J.Oh, On the Iwasawa λ -invariants of imaginary quadratic fields , Proc. Japan Acad. Ser. A math. Sci. **75** (3) (1999), 29–31.
- [7] W.Sinnott, On the μ -invariant of the Gamma-transform of a rational function, Invent. Math. **75** (1984), 273–282.

Jangheon Oh Faculty of Mathematics and Statistics Sejong University Seoul 05006, Korea E-mail: oh@sejong.ac.kr