k- DENTING POINTS AND k- SMOOTHNESS OF BANACH SPACES

SUYALATU WULEDE*, SHAOQIANG SHANG, AND WURINA BAO

ABSTRACT. In this paper, the concepts of k-smoothness, k-very smoothness and k-strongly smoothness of Banach spaces are dealt with together briefly by introducing three types k-denting point regarding different topology of conjugate spaces of Banach spaces. In addition, the characterization of first type $w^* - k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

1. Introduction

Throughout this paper, $(X, \|\cdot\|)$ will denote a real Banach space and X^* will denote its conjugate space. Set

 $U(X) = \{x : x \in X, || x || \le 1\}, \ U(x_0, \delta) = \{x : x \in X, || x - x_0 || \le \delta\},\ S(X) = \{x : x \in X, || x || = 1\}, \ S_x = \{f : f \in S(X^*), f(x) = 1 = || x || \}.$ For $f \in X^*$ and $\delta > 0$, set $F(f, \delta)$ will denote the slice $\{x \in U(X) : f(x) > 1 - \delta\}$. The symbol $x_n \xrightarrow{w^*} x$ (resp. $x_n \xrightarrow{w} x, x_n \longrightarrow x$) will denote the sequence $\{x_n\}$ of X which w^* (resp. w, strong) convergence to x in X. $\sigma(X, w)$ will denote the weak topology of X and the open (resp. compact, closed) set regarding weak topology $\sigma(X, w)$ is said

Received May 12, 2016. Revised July 19, 2016. Accepted August 21, 2016. 2010 Mathematics Subject Classification: 46B09; 46B20.

Key words and phrases: k denting points, k smooth spaces, k very smooth spaces, k strongly smooth spaces, Banach spaces.

^{*} Corresponding author.

This work was supported by the National Natural Science Foundation of China (Grant no.11561053) and Foundation of Inner Mongolia Normal University RCPY-2-2012-K-034.

[©] The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

to be w open (resp. w compact, w closed) set. The symbol $\sigma(X^*, w^*)$ will denote the weak* topology of X^* and the open (resp. compact, closed) set regarding weak* topology $\sigma(X^*, w^*)$ is said to be w^* open (resp. w^* compact, w^* closed) set. The neighborhood regarding weak (weak*)topology is said to be w (w^*) neighborhood. The accumulation point regarding weak* topology is said to be w^* accumulation point. The symbol coM will denote the convex hull of set M and the symbol \overline{H}^w (resp. \overline{H}^{w^*}) will denote the w (resp. w^*) closure of set H, where $H \subset X^*$.

DEFINITION 1.1. A point $x^* \in S(X^*)$ is said to be first (resp. second) type weak* -k (in short $w^* - k$) denting point of $U(X^*)$ if there is a $x \in S(X)$ with $x^*(x) = 1$, dim $S_x \leq k$ such that for every norm (resp. w^*) open set V_{S_x} which includes set S_x , we have $S_x \cap \overline{co}^{w*}(U(X^*) \setminus V_{S_x}) = \emptyset$.

DEFINITION 1.2. A point $x^* \in S(X^*)$ is said to be weak-k (in short w-k) denting point of $U(X^*)$ if there is a $x \in S(X)$ with $x^*(x)=1$, $\dim S_x \leq k$

such that for every w open set V_{S_x} which includes set S_x , we have $S_x \cap \overline{co}^w(U(X^*) \setminus V_{S_x}) = \emptyset$.

DEFINITION 1.3. [4] Let X be a Banach space. A point $x \in S(X)$ is said to be k-smooth point of X if the inequality $\dim S_x \leq k$ holds for $x \in S(X)$, where $\dim S_x$ denote the linear dimension of S_x . X is said to be k-smooth space if every point of S(X) is k-smooth point of X.

DEFINITION 1.4. [4,9] Let X be a Banach space. X is said to be k-strongly (resp.k-very) smooth space if and only if X is k-smooth space and for any sequence $\{f_n\} \subset S(X^*), x \in S(X) \text{ and } f_n(x) \to 1 \text{ imply that } \{f_n\}$ is relatively compact (resp. relatively w compact).

Let us recall the concepts of denting point and property (G).

Let M be a subset of X. A point $x \in M$ is said to be denting point of M if $x \notin \overline{co}(M \setminus N(0, \epsilon))$ holds for any $\epsilon > 0$. M is said to be dentable set if for any $\epsilon > 0$ there is a $x_{\epsilon} \in M$ such that $x_{\epsilon} \notin \overline{co}(M \setminus N(x_{\epsilon}, \epsilon))$, where $N(x_{\epsilon}, \epsilon) = \{x \in X : ||x - x_{\epsilon}|| < \epsilon\}$. The concept of dentabe set was first introduced by Rieffel in 1966 and the following important result has been given in [5]. That is, X has the Radon-Nikodym property whenever every bounded subset of X is dentable. This important result, later improved by Maynard [3] in 1973, is very simply. That is, X has the Radon-Nikodym property if and only if X is dentable.

The property (G) is given by Fan and Glicksberg [1] in 1955. Banach space X has the property (G) if and only if for all $x \in S(X)$ and $\epsilon > 0$, we have $x \notin \overline{co}(H(x,\epsilon))$, where $H(x,\epsilon) = \{y: y \in X, || y - x || \geq \epsilon \}$. In 1993, the concept of strongly convex Banach spaces were introduced by Wu and Li, and the another important result connected to property (G) has been given in [7]. That is, X is strongly convex space if and only X has the property (G), where X is reflexive Banach space. Noticing that the connection with dentable set and property (G), the above important result can be motivated by the following restatement of property (G). That is, X is strongly convex space if and only if every point of S(X) is denting point of U(X), where X is reflexive Banach space. Up to now, this result is only a result has being known about describing the straight relations between dentability and convexity.

The concept of w^* denting point of $U(X^*)$ was given in [1]. A point $x^* \in S(X^*)$ is said to be denting point of $U(X^*)$ if $x^* \notin \overline{co}^{w^*}(U(X^*) \setminus N(x^*, \epsilon))$ holds for each $\epsilon > 0$, where $N(x^*, \epsilon) = \{y^* : y^* \in X^*, \|y^* - x^*\| < \epsilon\}$). About the strongly smooth space which is the dual concept of strongly convex space, Shang, Cui and Fu [6] are greatly inspired to obtain the following important result: X is strongly smooth spaces if and only if the point of $S(X^*)$ which attains its norm is the w^* denting point of $U(X^*)$. Up to now, this important result is only a result has being known about describing the straight relations between dentability and smoothness also.

In this paper, the concepts of k-smoothness, k-very smoothness and k-strongly smoothness of Banach spaces are dealt with together by introducing three types k-denting point regarding different topology of conjugate spaces of Banach spaces. In fact, by using the skill of Banach spaces theory, we show that X is k-smooth (resp. k-strongly smooth) spaces if and only if each point of $S(X^*)$ which attains its norm is the second (resp. first) type $w^* - k$ denting point of $U(X^*)$; X is k-very smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the w-k denting point of $U(X^*)$. Specially, as a simple consequence of these results, we obtain the main result of ref [6]. In fact, the first type weak* -1 denting point coincide with weak* denting point. Also, the characterization of first type $w^* - k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

2. Main results

Theorem 2.1. X is k-very smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the w-k denting point of $U(X^*)$.

Proof. Proof of necessity. Firstly, we will prove that if for all $x^* \in$ $S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, dim $S_x \leq k$, and $\{x_n^*\}_{n=1}^{\infty} \subset S(X^*)$ satisfying $x_n^*(x) \to 1(n \to \infty)$, then $(\overline{\{x_n^*\}_{n=1}^{\infty}}^w) \cap S_x \neq \emptyset.$

In fact, by the k-very smoothness of X, we know that $\dim S_x \leq k$ and there exists a subsequence $\{x_{n_k}^*\}_{k=1}^{\infty}$ of $\{x_n^*\}_{n=1}^{\infty}$ such that $x_{n_k}^* \xrightarrow{w}$ $y^*(k \to \infty)$. It follows that $x_{n_k}^*(x) \stackrel{\sim}{\to} y^*(x) = 1$, hence $||y^*|| \ge 1$.

On the other hand, noticing that $U(X^*)$ is w^* closed set, we know that $||y^*|| \le 1$. Moreover, we have $y^* \in S_x$. This shows that $\overline{\{x_n^*\}_{n=1}^{\infty}}^w \cap S_x \ne \emptyset$.

$$\overline{\{x_n^*\}_{n=1}^{\infty}}^w \cap S_x \neq \emptyset.$$

Secondly, we will prove that for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, and for each w open set V_{S_x} which includes S_x there exists a scalar m > 0 such that

$$x^*(x) \ge z^*(x) + m$$
, if $z^* \in U(X^*) \setminus V_{S_x}$.

If it is not true, then there exists $z_n^* \in U(X^*) \setminus V_{S_x}$ such that $z_n^*(x) \to$

$$x^*(x) = 1(n \to \infty)$$
, so we have $\overline{\{z_n^*\}_{n=1}^{\infty}}^w \cap S_x \neq \emptyset$, $\{z_n^*\}_{n=1}^{\infty} \cap V_{S_x} = \emptyset$, which is a contradiction.

Moreover, we have

$$x^{*}(x) - m \geq \sup\{z^{*}(x) : z^{*} \in U(X^{*}) \setminus V_{S_{x}}\}$$

$$= \sup\{z^{*}(x) : z^{*} \in co(U(X^{*}) \setminus V_{S_{x}})\}$$

$$= \sup\{z^{*}(x) : z^{*} \in \overline{co}^{w}(U(X^{*}) \setminus V_{S_{x}})\}.$$

This shows that $x^* \notin \overline{co}^w(U(X^*) \setminus V_{S_x})$, hence $S_x \cap \overline{co}^w(U(X^*) \setminus V_{S_x}) = \emptyset$. By Definition 2.1 we know that each point of $S(X^*)$ which attains its norm is the w-k denting point of $U(X^*)$.

Proof of sufficiency.

Firstly, we will prove that X is k-smooth spaces.

For all $x \in S(X)$, by Hahn-Banach theorem, there exists $x^* \in S(X^*)$ such that $x^*(x) = 1$, hence x^* is a point of $S(X^*)$ which attains its norm. By the assumption of Theorem 2.1, we know that x^* is w-kdenting point of $U(X^*)$. It follows that $\dim S_x \leq k$, this shows that X is k-smooth spaces.

Secondly, we will prove that if

 $x \in S(X), \ \{x_n^*\}_{n=1}^{\infty} \subset S(X^*), \ x_n^*(x) \to 1(n \to \infty),$ then $\{x_n^*\}_{n=1}^{\infty}$ is relatively w compact set and there exist

$$x^* \in S_x$$
, net $\{x_\alpha^*\}_{\alpha \in \Delta} \subset \{x_n^*\}_{n=1}^\infty$

such that $x_{\alpha}^* \xrightarrow{w^*} x^*$ (here, we may assume that $x_n^* \neq x_m^*$ for all $m \neq n$).

Because $U(X^*)$ is w^* compact set, so there exists $x^* \in U(X^*)$ such that x^* become w^* accumulation point of $\{x_n^*\}_{n=1}^{\infty}$. Let

 $\Delta = \{R_{x^*} : R_{x^*} \text{ is } w^* \text{ neighborhood of point } x^* \}$ and define a order by inclusive relation, i.e., $R_{x^*} \subset Q_{x^*}$ if and only if $R_{x^*} \succ Q_{x^*}$. Then

 $\{R_{x^*} \cap \{x_n^*\}_{n=1}^{\infty} : R_{x^*} \text{ is } w^* \text{ neighborhood of point } x^*\}$ is a semi-ordered set. By Zermelo principle, there is a mapping f such that

$$f(R_{x^*} \cap \{x_n^*\}_{n=1}^{\infty}) \in R_{x^*} \cap \{x_n^*\}_{n=1}^{\infty}.$$

Put $x_{\alpha}^* = f(R_{x^*} \cap \{x_n^*\}_{n=1}^{\infty})$, then $\{x_{\alpha}^*\}_{\alpha \in \Delta} \subset \{x_n^*\}_{n=1}^{\infty}$ is a net. From $x_n^*(x) \to 1(n \to \infty)$ and the structure of this net, we know that $x_{\alpha}^* \xrightarrow{w^*} x^*$ and $x^* \in S_x$.

It remains to prove that $\{x_n^*\}_{n=1}^{\infty}$ is relatively w compact set.

Case 1°: If $\{x_n^*\}_{n=1}^{\infty} \cap S_x = \emptyset$, then $\{x_n^*\}_{n=1}^{\infty}$ must be a relatively w compact set. If it is not true, then any point of S_x is not w accumulation point of $\{x_n^*\}_{n=1}^{\infty}$, i.e., for all $x^* \in S_x$ there exists a w neighborhood V_{x^*} of point 0 such that $x^* + V_{x^*}$ does not contain any point of $\{x_n^*\}_{n=1}^{\infty}$. We construct a w open set

$$V_{S_x} = \cup_{x^* \in S_x} \{ y^* : y^* \in x^* + V_{x^*} \}.$$

Obviously, V_{S_x} includes S_x and $\{x_n^*\}_{n=1}^{\infty} \cap V_{S_x} = \emptyset$. Because $U(X^*)$ is w^* compact set, so $\overline{co}^{w^*}(U(X^*)\backslash V_{S_x})$ is w^* compact set also. Noticing that S_x is w^* closed set, by separating theorem, we know that there exists $y \in X$ such that

$$y(S_x) > \sup y(\overline{co}^{w^*}(U(X^*)\backslash V_{S_x}).$$

Moreover, we choose a scalar r > 0 such that

$$y(S_x) - y(\overline{co}^{w^*}(U(X^*) \setminus V_{S_x}) > r.$$

Obviously,

$$\{x_n^*\}_{n=1}^{\infty} \subset \overline{co}^{w^*}(U(X^*) \setminus V_{S_r}).$$

On the other hand, by we have proved above, we know that there exists net $\{x_{\alpha}^*\}_{\alpha\in\Delta}\subset\{x_n^*\}_{n=1}^{\infty}$, such that $x_{\alpha}^*\xrightarrow{w^*}x^*$ and $x^*\in S_x$. This contradicts that

$$y(S_x) - y(\overline{co}^{w^*}(U(X^*) \setminus V_{S_x}) > r.$$

Hence, we obtain the desired result that $\{x_n^*\}_{n=1}$ is a relatively w compact set.

Case 2°: If $\{x_n^*\}_{n=1}^{\infty} \cap S_x \neq \emptyset$, then by case 1° we know that $\{x_n^*\}_{n=1}^{\infty} \setminus S_x$ is a relatively w compact set. Because S_x is a bounded closed set of finite dimensional spaces, so $\{x_n^*\}_{n=1}^{\infty} \cap S_x$ is a relatively w compact set. Noticing that

THEOREM 2.2. X is k-strongly smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the first type $w^* - k$ denting point of $U(X^*)$.

Proof. Proof of necessity. Firstly, we will prove that if for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, $\dim S_x \leq k$, and each norm open set V_{S_x} which includes S_x there exists a scalar r > 0 such that the inequality $\operatorname{dist}(z^*, S_x) \geq r$ holds for $z^* \notin V_{S_x}$.

In fact, by the k-strongly smoothness of X, we know that $\dim S_x \leq k$. Because V_{S_x} is a norm open set which includes S_x , so there exists $\delta' > 0$ such that $U(x^*, \delta') \subset V_{S_x}$ holds for $x^* \in S_x$ and such δ' exists a minimum value δ . Obviously, $\bigcup_{x^* \in S_x} U(x^*, \delta) \subset V_{S_x}$. Let $r = \frac{\delta}{2}$, then we have $\operatorname{dist}(z^*, S_x) \geq r$. Otherwise, there exists $x^* \in S_x$ such that $||z^* - x^*|| < r < \delta$, hence $z^* \in \bigcup_{x^* \in S_x} U(x^*, \delta) \subset V_{S_x}$. This contradicts that $z^* \notin V_{S_x}$.

Secondly, we will prove that for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, and for each norm open set V_{S_x} which includes S_x there exists a scalar m > 0 such that

$$x^*(x) \ge z^*(x) + m$$
, if $z^* \in U(X^*) \setminus V_{S_x}$.

If it is not true, then there exists $z_n^* \in U(X^*) \setminus V_{S_x}$ such that $z_n^*(x) \to x^*(x) = 1(n \to \infty)$. By the k-strongly smoothness of X, we can deduce that $\operatorname{dist}(z_n^*, S_x) \to 0(n \to \infty)$. Otherwise, we may find a $\epsilon_0 > 0$ such that for every $n_0 > 0$, there exists $n_k > n_0$, $k = 1, 2, \dots$, satisfying

 $\operatorname{dist}(z_{n_k}^*,S_x)>\epsilon_0$. On the other hand, $z_n^*(x)\to 1$ implies that $z_{n_k}^*(x)\to 1$. Hence, by the k-strongly smoothness of X we know that $\{z_{n_k}^*\}$ is a relatively compact set. It follows that there exists subsequence $\{z_{n_{k_l}}^*\}\subset\{z_{n_k}^*\}$ such that $z_{n_{k_l}}^*\to z_0^*$. Hence $z_{n_{k_l}}^*(x)\to z_0^*(x)=1$ and $z_0^*\in S_x$. Which leads to that $\operatorname{dist}(z_{n_k}^*,S_x)\to 0$. This contradicts that $\operatorname{dist}(z_{n_k}^*,S_x)>\epsilon_0$.

Moreover, we have

$$x^{*}(x) - m \geq \sup\{z^{*}(x) : z^{*} \in U(X^{*}) \setminus V_{S_{x}}\}$$

$$= \sup\{z^{*}(x) : z^{*} \in co(U(X^{*}) \setminus V_{S_{x}})\}$$

$$= \sup\{z^{*}(x) : z^{*} \in \overline{co}^{w^{*}}(U(X^{*}) \setminus V_{S_{x}})\}.$$

This shows that $x^* \notin \overline{co}^{w^*}(U(X^*)\backslash V_{S_x})$, it follows that $S_x \cap \overline{co}^{w^*}(U(X^*)\backslash V_{S_x}) = \emptyset$. Hence, we obtain the desired result that each point of $S(X^*)$ which attains its norm is the first type $w^* - k$ denting point of $U(X^*)$.

Proof of sufficiency. Suppose that $x \in S(X)$, $\{x_n^*\}_{n=1}^{\infty} \subset S(X^*)$, $x_n^*(x) \to 1(n \to \infty)$. Greatly similarly to the proof of Theorem 2.1, by using the given conditions in Theorem 2.2, we can prove that there exists a net $x^* \in S_x\{x_n^*\}_{n=1}^{\infty} \subset \{x_n^*\}_{\alpha \in \Delta}$ such that $x_\alpha^* \xrightarrow{w^*} x^*$ and X is k-smooth spaces. Now we prove that $\{x_n^*\}_{n=1}^{\infty}$ is a relatively compact set.

Case 1°: If $\{x_n^*\}_{n=1}^{\infty} \cap S_x = \emptyset$, then $\{x_n^*\}_{n=1}^{\infty}$ must be a relatively compact set. If it is not true, then any point of S_x is not accumulation point of $\{x_n^*\}_{n=1}^{\infty}$. Hence, for all $x^* \in S_x$ there is a $\epsilon > 0$ such that the set $\{y^* : \|y^* - x^*\| < \epsilon\}$ does not contain any point of $\{x_n^*\}_{n=1}^{\infty}$. We construct a norm open set

$$V_{S_x} = \bigcup_{x^* \in S_x} \{y^* : ||y^* - x^*|| < \epsilon\}.$$
 Obviously, V_{S_x} includes S_x and $\bigcup_{x^* \in S_x} \{y^* : ||y^* - x^*|| < \epsilon\} \cap \{x_n^*\}_{n=1}^{\infty} = \emptyset$. Greatly similarly to the proof of Theorem 2.1, we can deduce that $\{x_n^*\}_{n=1}^{\infty}$ is a relatively compact set.

Case 2°: If $\{x_n^*\}_{n=1}^{\infty} \cap S_x \neq \emptyset$, then by case 1° we know that $\{x_n^*\}_{n=1}^{\infty} \setminus S_x$ is a relatively compact set. Because S_x is a bounded closed set of finite dimensional spaces, so $\{x_n^*\}_{n=1}^{\infty} \cap S_x$ is a relatively compact set. Noticing that

When k = 1, the first type $w^* - 1$ denting point coincide with w^* denting point. It is well known that 1-strongly smooth space coincide

with usual strongly smooth spaces [8]. Hence we obtained the following corollary.

COROLLARY 2.1. [6] X is strongly smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the w^* denting point of $U(X^*)$.

In what follows, using the slice of closed unit ball of conjugate spaces X^* , we will describe the characterization of first type $w^* - k$ denting point.

THEOREM 2.3. $x^* \in S(X^*)$ is first $w^* - k$ denting point of $U(X^*)$ if and only if there exists $x \in S(X)$ such that $x^* \in S_x$, $dimS_x \leq k$ and for $\forall \epsilon > 0$, there exists slice

$$F(x,\delta) = \{z^*: z^* \in U(X^*), z^*(x) > 1 - \delta\}$$

satisfying the inclusive relation

$$F(x,\delta) \subset \{y^*: y^* \in U(X^*), d(y^*, S_x) < \epsilon\}.$$

Proof. Proof of necessity. Suppose that $x^* \in S(X^*)$ is first $w^* - k$ denting point of $U(X^*)$, then there exists $x \in S(X)$ such that $x^* \in S_x$, $\dim S_x \leq k$. Let

 $H_{S_x} = \{y^*: y^* \in U(X^*), d(y^*, S_x) < \epsilon\},$ then H_{S_x} is norm open set which includes S_x , hence $S_x \cap \overline{co}^{w^*}(U(X^*) \setminus H_{S_x}) = \emptyset$. Moreover, we can deduce that

$$\sup x(\overline{co}^{w^*}(U(X^*)\setminus H_{S_x})<1.$$

Otherwise, there exists sequence $y_n^* \in \overline{co}^{w^*}(U(X^*)) \setminus H_{S_x}$ such that $y_n^*(x) \to 1 \ (n \to \infty)$. Let $x_n^* = \frac{y_n^*}{\|y_n^*\|}$, then $x_n^*(x) \to 1 \ (n \to \infty)$. From the proof of Theorem 2.2, we know that x is k-smooth point of X and $\{x_n^*\}_{n=1}^{\infty}$ is relatively compact set. Therefore, sequence $\{x_n^*\}_{n=1}^{\infty}$ has the convergent subsequence, without loss of generality, let the convergent subsequence be $\{x_n^*\}_{n=1}^{\infty}$ itself and suppose that $x_n^* \to x_0^* \ (n \to \infty)$. Clearly.

$$x_n^*(x) \to 1 = x_0^*(x) \ (n \to \infty), \ x_0^* \in S_x.$$

On the other hand,

$$\|y_n^* - x_0^*\| \le \|\frac{y_n^*}{\|y_n^*\|} - y_n^*\| + \|\frac{y_n^*}{\|y_n^*\|} - x_0^*\| \to 0 (n \to \infty),$$

it follows that x_0^* belong to the norm closure of set $\overline{co}^{w^*}(U(X^*) \setminus H_{S_x})$. Noticing that this set is closed set regarding norm topology, we know that $x_0^* \in \overline{co}^{w^*}(U(X^*) \setminus H_{S_x})$, hence $x_0^* \notin H_{S_x}$. It is impossible.

Let
$$1 - \delta = \sup x(\overline{co}^{w^*}(U(X^*) \setminus H_{S_x}))$$
. It is easy to see that if $z^* \in F(x,\delta) = \{z^*: z^* \in U(X^*), z^*(x) > 1 - \delta\}$, then $z^* \notin \overline{co}^{w^*}(U(X^* \setminus H_{S_x}))$. Hence $z^* \in H_{S_x}$, this shows that $F(x,\delta) \subset H_{S_x}$.

Proof of sufficiency. Suppose that there exists $x \in S(X)$ such that $x^* \in S_x$, $\dim S_x \leq k$ and for $\forall \epsilon > 0$, there exists slice

 $F(x,\delta) = \{z^*: z^* \in U(X^*), z^*(x) > 1 - \delta\}$ satisfying the inclusive relation

 $F(x,\delta) \subset \{y^*: y^* \in U(X^*), d(y^*, S_x) < \epsilon\}.$

For the convenient, we denote $\{y^*: y^* \in U(X^*), d(y^*, S_x) < \epsilon\}$ by H_{S_x} , then

 $\frac{1-\delta}{\overline{co}^{w^*}(U(X^*)\backslash H_{S_x})} = \sup\{z^*(x) : z^* \in co(U(X^*)\backslash H_{S_x})\} = \sup\{z^*(x) : z^* \in \overline{co}^{w^*}(U(X^*)\backslash H_{S_x})\}.$

Moreover, we can deduce that $S_x \cap \overline{co}^{w^*}(U(X^*) \setminus H_{S_x}) = \emptyset$ from the structure of S_x . Hence $x^* \in S(X^*)$ is first $w^* - k$ denting point of $U(X^*)$. \square

THEOREM 2.4. X is k- smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the second type w^*-k denting point of $U(X^*)$.

Proof. The sufficiency is immediate from the definition of k- smooth spaces. It remains to prove the necessity.

Firstly, we will prove that for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, and $\{x_n^*\}_{n=1}^{\infty} \subset S(X^*)$ satisfying $x_n^*(x) \to 1(n \to \infty)$, then $\overline{\{x_n\}_{n=1}^{\infty}}^{w^*} \cap S_x \neq \emptyset$.

If it is not true, then there exists w^* neighborhood V_{S_x} which includes S_x such that $\overline{\{x_n^*\}_{n=1}^{\infty}} \cap S_x = \emptyset$. From the proof of sufficient of Theorem 2.2, we know that there exists net $\{x_\alpha^*\}_{\alpha \in \Delta} \subset \{x_n^*\}_{n=1}^{\infty}$ satisfying $x_\alpha^* \xrightarrow{w^*} x^*$, $x^* \in S_x$. Hence $\overline{\{x_n^*\}_{n=1}^{\infty}}^{w^*} \cap S_x \neq \emptyset$. This contradicts that $\overline{\{x_n^*\}_{n=1}^{\infty}} \cap S_x = \emptyset$.

Secondly, we will prove that if for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, and each w^* open set V_{S_x} which includes S_x there exists a scalar m > 0 such that $x^*(x) \geq z^*(x) + m$ holds for $z^* \in U(X^*) \setminus V_{S_x}$.

If it is not true, then there exists $z_n^* \in U(X^*) \setminus V_{S_x}$ such that $z_n^*(x) \to x^*(x) = 1(n \to \infty)$. Hence we have $\{z_n^*\}_{n=1}^{\infty} \cap S_x \neq \emptyset$. On the other hand, for $z_n^* \in U(X^*)/V_{S_x}$, we have $\{z_n^*\}_{n=1}^{\infty} \cap V_{S_x} = \emptyset$. This contradicts that $\{z_n^*\}_{n=1}^{\infty} \cap S_x \neq \emptyset$.

Moreover, we have

 $x^*(x) - m \ge \sup\{z^*(x) : z^* \in U(X^*) \setminus V_{S_x}\} = \sup\{z^*(x) : z^* \in co(U(X^*) \setminus V_{S_x})\} = \sup\{z^*(x) : z^* \in \overline{co}^{w^*}(U(X^*) \setminus V_{S_x})\}.$

This shows that $x^* \notin \overline{co}^{w^*}(U(X^*) \setminus V_{S_x})$, it follows that $S_x \cap \overline{co}^{w^*}(U(X^*) \setminus V_{S_x})$ = \emptyset . By the definition of k- smooth spaces, we know that $\dim S_x \leq k$. Hence, we obtain the desired result that each point of $S(X^*)$ which attains its norm is the second type $w^* - k$ denting point of $U(X^*)$. \square

References

- Ky Fan and I. Glicksburg, Fully convex normed linear spaces, Proc. Natl. Acad. Sci. USA 41 (1955), 947–953.
- [2] P.D.Liu, Martingle and Geometric of Banach Space. Science Press. Shanghai (in Chinese), 2007.
- [3] H.B.Maynard, A geometrical characterization of Banach spaces having the Radon-Nikodym property, Trans.Amer.Math.Soc. 185(1973) 493-500.
- [4] C.X.Nan and J.H.Wang, k-strict convexity and k-smoothness, Chinese Ann.Math (in Chinese).(Series A). 11(3)(1990) 321-324.
- [5] M.A.Rieffel, Dentable subsets of Banach spaces, with applications to a Radon-Nikodym theorem, Funct.Anal.Proc. (Conf. Irvine, Calif., 1966), Acad.Press,London,Thompson, Washington, D.C. 71-77.
- [6] S.Q.Shang,Y.A.Cui,Y.Q.Fu, Denting point, smoothness of Banach spaces and approximation compactness[J]. Acta Mathematica Sinica (in Chinese). 53(6)(2010) 1217-1224.
- [7] C.X.Wu, Y.J.Li, Strong convexity in Banach spaces, Chin. J.Math. 13(1993) 105-108
- [8] X.T. Yu. Geometric Theory of Banach Space. East China Normal Univ (in Chinese), 1984.
- [9] Z.H.Zhang On k-strictly convex and k-very smooth Banach space, Northeast.Math.J. 12(2)(1996) 165-170.

Suyalatu Wulede College of Mathematics Science Inner Mongolia Normal University Hohhot 010022,P.R.China *E-mail*: Suyila@imnu.edu.cn

Shaoqiang Shang School of Science Northeast Forestry University Harbin 150040,P.R.China *E-mail*: yizhitu@163.com

Wurina Bao Xilingol Vacation College Xilinhot 026000,P.R.China *E-mail*: baowurina@sohu.com