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APPLICATION OF CONVOLUTION THEORY ON

NON-LINEAR INTEGRAL OPERATORS

Satwanti Devi and A. Swaminathan

Abstract. The class Wδ
β(α, γ) defined in the domain |z| < 1 sat-

isfying

Re eiφ
(

(1−α+2γ)(f/z)
δ

+
(
α−3γ + γ

[
(1− 1/δ) (zf ′/f)

+1/δ
(

1 + zf ′′/f ′
)])

(f/z)
δ
(zf ′/f)− β

)
> 0,

with the conditions α ≥ 0, β < 1, γ ≥ 0, δ > 0 and φ ∈ R general-
izes a particular case of the largest subclass of univalent functions,
namely the class of Bazilevič functions. Moreover, for 0 < δ ≤ 1

(1−ζ) ,

0 ≤ ζ < 1, the class Cδ(ζ) be the subclass of normalized analytic
functions such that

Re (1/δ (1 + zf ′′/f ′) + (1− 1/δ) (zf ′/f)) > ζ, |z| < 1.

In the present work, the sufficient conditions on λ(t) are investigated,
so that the non-linear integral transform

V δλ (f)(z) =

(∫ 1

0

λ(t) (f(tz)/t)
δ
dt

)1/δ

, |z| < 1,

carries the functions from Wδ
β(α, γ) into Cδ(ζ). Several interesting

applications are provided for special choices of λ(t). These results are
useful in the attempt to generalize the two most important extremal
problems in this direction using duality techniques and provide scope
for further research.
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1. Introduction

Let A be the class of all normalized analytic functions f defined in
the region D = {z ∈ C : |z| < 1} with the condition f(0) = f ′(0)−1 = 0
and S ⊂ A be the class of all univalent functions in D. We are interested
in the following problem.

Problem 1. Given λ(t) : [0, 1] → R be a non-negative integrable

function with the condition
∫ 1

0
λ(t)dt = 1, then for f in a particular

class of analytic functions, the generalized integral transform defined by

V δ
λ (f)(z) :=

(∫ 1

0

λ(t)

(
f(tz)

t

)δ
dt

)1/δ

, δ > 0 and z ∈ D(1.1)

is in one of the subclasses of S.

This problem, for the case δ = 1 was first stated by R. Fournier and
S. Ruscheweyh [10] by examining the characterization of two extremal
problems. They considered the functions f in the class Pβ, where

Pβ =
{
f ∈ A : Re

(
eiα(f ′(z)− β)

)
> 0, α ∈ R, z ∈ D

}
.

such that the integral operator Vλ(f)(z) : V 1
λ (f)(z) is in the class S∗

of functions that map D onto domain that are starlike with respect to
origin using duality techniques. Same problem was solved by R.M. Ali
and V.Singh [3] for functions f in the class Pβ so that the integral
operator Vλ(f)(z) is in the class C of functions that map D onto domain
that are convex.

The integral operator Vλ(f)(z) contains some of the well-known op-
erator such as Bernardi, Komatu and Hohlov as its special cases for
particular choices of λ(t), which has been extensively studied by various
authors (for details see [3, 5, 6] and references therein). Generalization
of the class Pβ for studying the above problem with reference to the
operator Vλ(f)(z) were considered by several researchers in the recent
past and interesting applications were obtained. For most general result
in this direction, see [6] and references therein.

R. Fournier and S.Ruscheweyh [10] were interested in the two ex-
tremal problems to characterize the weight functions for which LΛ(M) =
0, where M is any subclass of S as it is not possible to solve the prob-
lem for the case M = S. After their consideration of the class K of
close-to-convex functions in [10], further study has been carried out by



Application of Convolution Theory on Non-Linear Integral Operators 411

many researchers in considering the class K only. Since the class B of
Bazilevič functions (see [16] for the definition of this class) is the largest
subclass of S and contains the class K it would be interesting to study
the extremal problem for the class B. Hence in [7], the authors proposed
the following problem.

Problem 2. To characterize the weight functions and study the two
extremal problems given by R. Fournier and S.Ruscheweyh [10] for the
class B of Bazilevič functions.

Problem 1 for the generalized integral operator V δ
λ (f)(z) relating star-

likeness was investigated by A. Ebadian et al. in [9] by considering the
class

Pα(δ, β) :=

{
f ∈ A , ∃φ ∈ R : Re eiφ

(
(1− α)

(
f

z

)δ
+ α

(
f

z

)δ (zf ′
f

)
− β

)

> 0, z ∈ D

}
with α ≥ 0, β < 1 and δ > 0. The authors of the present work

have generalized the starlikeness criteria [7] by considering the following
subclass of S∗

f ∈ S∗s (ζ) ⇐⇒ z1−δf δ ∈ S∗(ξ),(1.2)

for ξ = 1 − δ + δζ and 0 ≤ ξ < 1 where S∗(ξ) is the class having the
analytic characterization

Re

(
zf ′

f

)
> ξ, 0 ≤ ξ < 1, z ∈ D.

Note that S∗ := S∗(0). In [7], this problem was investigated by consid-
ering the integral operator acting on the most generalized class of Pβ,
related to the present context, which is defined as follows.

Wδ
β(α, γ) :=

{
f ∈A : Re eiφ

(
(1−α+2γ)

(
f

z

)δ
+

(
α−3γ+γ

[(
1− 1

δ

)(
zf ′

f

)

+
1

δ

(
1+

zf ′′

f ′

)])(
f

z

)δ(zf ′
f

)
− β

)
> 0, z ∈ D, φ ∈ R

}
.

Here, α ≥ 0, β < 1, γ ≥ 0 and φ ∈ R. Note that Wδ
β(α, 0) ≡ Pα(δ, β) is

the class considered by A. Ebadian et al in [9], Rα(δ, β) :≡ Wδ
β(α + δ +
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δα, δα) is a closely related class andW1
β(α, γ) ≡ Wβ(α, γ) introduced by

R.M. Ali et al in [1].
As the investigation of this generalization provided fruitful results, we

are interested in considering further geometric properties of the gener-
alized integral operator given by (1.1) for f ∈ Wδ

β(α, γ). Motivated, by
the well-known Alexander theorem [8],

f ∈ C(ξ)⇐⇒ zf ′ ∈ S∗(ξ),

where C(0) = C, we consider the subclass

f ∈ Cδ(ζ)⇐⇒ (z2−δf δ−1f ′) ∈ S∗(ξ),(1.3)

where ξ := 1− δ + δζ with the conditions 1− 1
δ
≤ ζ < 1, 0 ≤ ξ < 1 and

δ ≥ 1. In the sequel, the term ξ is used to denote (1 − δ + δζ). From
the above expression, it is easy to observe that the class Cδ(ζ) and C(ξ)
are equal, when δ = 1.

The class Cδ(ζ) given in (1.3) is related to the class of α- convex of
order ζ (0 ≤ ζ < 1) that were introduced in the work of P. T. Mocanu [13]
and defined analytically as

Re

(
(1− α)

(
zf ′(z)

f(z)

)
+ α

(
1 +

zf ′′(z)

f ′(z)

))
> ζ, (1− ζ) ≤ α <∞.

Clearly the class Cδ(ζ) is nothing but the subclass of S consisting of 1/δ -
convex functions of order ζ.

Having provided all the required information from the literature, in
what follows, we obtain sharp estimates for the parameter β so that the
generalized integral operator (1.1) maps the function fromWδ

β(α, γ) into

Cδ(ζ), where 0 < δ ≤ 1
(1−ζ) and 0 ≤ ζ < 1. Duality techniques, given

in [15] provide the platform for the entire study of this manuscript. One
of the particular tool in this regard is the convolution or Hadamard
product of two functions f1(z) =

∑∞
n=0 anz

n and f2(z) =
∑∞

n=0 bnz
n,

z ∈ D, given by (f1 ∗ f2)(z) =
∞∑
n=0

anbnz
n.

Furthermore, consider the complex parameters ci (i = 0, 1, . . . , p) and
dj (j = 0, 1, . . . , q) with dj 6= 0,−1, . . . and p ≤ q+1. Then, in the region
D, the generalized hypergeometric function is given by

pFq

(
c1, . . . , cp
d1, . . . , dq

; z

)
=
∞∑
n=0

(c1)n . . . , (cp)n
(d1)n . . . , (dq)nn!

zn, z ∈ D,
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that can also be represented as pFq(c1, . . . , cp; d1, . . . , dq; z) or pFq. In
particular, 2F1 is the well-known Gaussian hypergeometric function. For
any natural number n, the Pochhammer symbol or shifted factorial (ε)n
is defined as (ε)0 = 1 and (ε)n = ε(ε+ 1)n−1.

The paper is organized as follows: Necessary and sufficient condi-
tions are obtained in Section 3 that ensures V δ

λ (Wδ
β(α, γ))⊂Cδ(ζ). The

simpler sufficient criterion are derived in Section 4, which are further
implemented to find many interesting applications involving various in-
tegral operators for special choices of λ(t).

2. Preliminaries

The parameters µ, ν ≥ 0 introduced in [1] are used for further analysis
that are defined by the relations

µν = γ and µ+ ν = α− γ.(2.1)

Clearly (2.1) leads to two cases.

(i) γ = 0 =⇒ µ = 0, ν = α ≥ 0.
(ii) γ > 0 =⇒ µ > 0, ν > 0.

Define the auxiliary function

ψδµ,ν(z) :=
∞∑
n=0

δ2

(δ + nµ)(δ + nν)
zn =

∫ 1

0

∫ 1

0

1

(1− uν/δ/vµ/δz)
dudv,

(2.2)

which by a simple computation gives

Φδ
µ,ν(z) :=

(
zψδµ,ν(z)

)′
=
∞∑
n=0

(n+ 1)δ2

(δ + nν)(δ + nµ)
zn(2.3)

and Υδ
µ,ν(z) :=

(
z
(
zψδµ,ν(z)

)′)′
=
∞∑
n=0

(n+ 1)2δ2

(δ + nν)(δ + nµ)
zn.(2.4)

Taking γ = 0 (µ = 0, ν = α ≥ 0), let qδ0,α(t) be the solution of the
differential equation
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d

dt

(
tδ/αqδ0,α(t)

)(2.5)

=
δtδ/α−1

α

((
1− 1

δ

)
(1− ξ (1 + t))

(1− ξ) (1 + t)2 +

(
1

δ

)
(1− t− ξ (1 + t))

(1− ξ) (1 + t)3

)
,

with the initial condition qδα(0) = 1. Then the solution of (2.5) is given
by

qδ0,α(t)

=
δt−δ/α

α

∫ t

0

((
1− 1

δ

)
(1− ξ (1 + s))

(1− ξ) (1 + s)2 +

(
1

δ

)
(1− s− ξ (1 + s))

(1− ξ) (1 + s)3

)
sδ/α−1ds.

Also, for the case γ > 0 (µ > 0, ν > 0), let qδµ,ν(t) be the solution of the
differential equation

d

dt

(
tδ/νqδµ,ν(t)

)(2.6)

=
δ2tδ/ν−1

µν

∫ 1

0

((
1− 1

δ

)
(1−ξ(1+st))

(1−ξ)(1+st)2
+

(
1

δ

)
(1−st−ξ(1+st))

(1−ξ)(1+st)3

)
sδ/µ−1ds,

with the initial condition qδµ,ν(0) = 1. Then the solution of (2.6) is given
as

qδµ,ν(t)=
δ2

µν

∫ 1

0

∫ 1

0

((
1− 1

δ

)
(1−ξ (1+trs))

(1−ξ) (1+trs)2(2.7)

+

(
1

δ

)
(1−trs−ξ (1+trs))

(1−ξ) (1 + trs)3

)
rδ/ν−1sδ/µ−1drds,

Furthermore, for given λ(t) and δ > 0, we introduce the functions

Λδ
ν(t) :=

∫ 1

t

λ(s)

sδ/ν
ds, ν > 0,(2.8)

and
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Πδ
µ,ν(t) :=


∫ 1

t

Λδ
ν(s)

sδ/µ−δ/ν+1
ds γ>0 (µ>0, ν >0),

Λδ
α(t) γ=0 (µ=0, ν=α≥0)

(2.9)

which are positive on t ∈ (0, 1) and integrable on t ∈ [0, 1].
For δ = 1, these information coincide with the one given in [2]. (2.8)

and (2.9) are also considered in [7]. In [7], the investigations are related
to V δ

λ (f)(z) ∈ S∗s (ζ), whenever f ∈ Wδ
β(α, γ), whereas various other

inclusion properties, in particular, V δ
λ (f)(z) ∈ Wδ1

β1
(α1, γ1), whenever

f ∈ Wδ2
β2

(α2, γ2) are investigated in [7].

3. Main results

The following result establishes both the necessary and sufficient con-
ditions that ensure Fδ(z) := V δ

λ (f)(z) ∈ Cδ(ζ), whenever f ∈ Wδ
β(α, γ).

Theorem 3.1. Let µ≥0, ν≥0 are given by the relation in (2.1) and(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
where δ ≥ 1. Let β<1 satisfy the condition

β − 1
2

1− β
= −

∫ 1

0

λ(t)qδµ,ν(t)dt,(3.1)

where qδµ,ν(t) is defined by the differential equation (2.5) for γ = 0 and
(2.6) for γ > 0. Further assume that the functions given in (2.8) and
(2.9) attains

lim
t→0+

tδ/νΛδ
ν(t)→ 0 and lim

t→0+
tδ/µΠδ

µ,ν(t)→ 0.

Then for f(z) ∈ Wδ
β(α, γ), the function Fδ := V δ

λ (f(z)) ∈ Cδ(ζ) iff,
MΠδµ,ν

(hξ)(z) ≥ 0, where

MΠδµ,ν
(hξ)(z) :=



∫ 1

0

tδ/µ−1Πδ
µ,ν(t)hξ,δ,z(t)dt, γ > 0 (µ > 0, ν > 0),

∫ 1

0

tδ/α−1Λδ
α(t)hξ,δ,z(t)dt, γ = 0 (µ = 0, ν = α ≥ 0),
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and

hξ,δ,z(t) :=

(
1− 1

δ

)(
Re

hξ(tz)

tz
− 1−ξ(1+t)

(1−ξ)(1+t)2

)
+

(
1

δ

)(
Reh′ξ(tz)− 1−t−ξ(1+t)

(1−ξ)(1+t)3

)
for the function

hξ(z) := z

(
1 + ε+2ξ−1

2(1−ξ) z

(1− z)2

)
, |ε| = 1(3.2)

and ξ := 1− δ(1− ζ), 0 ≤ ξ ≤ 1/2. The value of β is sharp.

Proof. From (1.3), it is clear that

Fδ ∈ Cδ(ζ)⇐⇒
(
z2−δ(Fδ)

δ−1F ′δ
)
∈ S∗(ξ)(3.3)

where ξ := 1− δ(1− ζ). Thus, to prove MΠδµ,ν
(hξ) ≥ 0 using the given

hypothesis, it is required to show that the function z2−δ(Fδ)
δ−1F ′δ is

univalent and satisfy the order of starlikeness condition, and conversely.
Let

H(z) :=(1−α+2γ)

(
f

z

)δ(3.4)

+

(
α−3γ + γ

[(
1− 1

δ

)(
zf ′

f

)
+

1

δ

(
1+

zf ′′

f ′

)])(
f

z

)δ(zf ′
f

)
.

Using the relation (2.1) in (3.4) gives

H(z) =
µν

δ2
z1−δ/µ

(
zδ/µ−δ/ν+1

(
zδ/ν

(
f

z

)δ)′)′
.

Further, set G(z) = (H(z) − β)/(1 − β), then there exist some φ ∈ R,
such that Re

(
eiφG(z)

)
> 0. Hence by the duality principle [15, p. 22],

we may confine to the function f(z) for which G(z) = (1 + xz)/(1 + yz),
where |x| = |y| = 1, which directly implies
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µν

δ2
z1−δ/µ

(
zδ/µ−δ/ν+1

(
zδ/ν

(
f

z

)δ)′)′
= (1− β)

1 + xz

1 + yz
+ β,

or equivalently,

(
f(z)

z

)δ
=

δ2

µνzδ/ν

(∫ z

0

1

ηδ/µ−δ/ν+1

(∫ η

0

1

ω1−δ/µ

(
(1− β)

1 + xω

1 + yω
+ β

)
dω

)
dη

)(3.5)

= β + (1−β)

((
1+xz

1+yz

)
∗
∞∑
n=0

δ2zn

(δ + nν)(δ + nµ)

)
.

If A(z) is taken as

(
f(z)

z

)δ
, then using (2.2), (2.3) and (2.4), in A(z),

zA′(z) and z(zA′(z))′ respectively, gives(
z

(
z

(
f(z)

z

)δ)′)′
=

(
β + (1− β)

(
1 + xz

1 + yz

))
∗Υδ

µ,ν(z).(3.6)

Since (
z

(
f(z)

z

)δ)′
= (1− δ)

(
f(z)

z

)δ
+ δ

(
f(z)

z

)δ (
zf ′(z)

f(z)

)
,(3.7)

this gives

(
z

(
f(z)

z

)δ (zf ′(z)
f(z)

))′
=

(
1− 1

δ

)(
z

(
f(z)

z

)δ)′
+

1

δ

(
z

(
z

(
f(z)

z

)δ)′)′
,

(3.8)

taking the logarithmic derivative on both sides of the integral operator
(1.1) and differentiating further with a simple computation involving
(3.6) gives(
z

(
z(Fδ)

′

Fδ

)(
Fδ
z

)δ)′

=(1−β)

(∫ 1

0

λ(t)

((
1− 1

δ

)
Φδ
µ,ν(tz)+

(
1

δ

)
Υδ
µ,ν(tz)

)
dt+

β

(1−β)

)
∗
(

1 + xz

1 + yz

)
.
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The Noshiro-Warschawski’s Theorem (for details see [8, Theorem 2.16])
states that the function z2−δ(Fδ)

δ−1(Fδ)
′ defined in the region D is univa-

lent if
(
z2−δ(Fδ)

δ−1(Fδ)
′)′ is contained in the half plane not containing

the origin. Hence, from the result based on duality principle [15, Pg.
23], it follows that

0 6=

(
z

(
z(Fδ)

′

Fδ

)(
Fδ
z

)δ)′
is true if, and only if

Re (1− β)

(∫ 1

0
λ(t)

((
1− 1

δ

)
Φδ
µ,ν(tz) +

(
1

δ

)
Υδ
µ,ν(tz)

)
dt+

β

(1− β)

)
>

1

2

or equivalently,

Re (1− β)

(∫ 1

0
λ(t)

((
1− 1

δ

)
Φδ
µ,ν(tz) +

(
1

δ

)
Υδ
µ,ν(tz)

)
dt+

β − 1
2

(1− β)

)
> 0.

Now, substituting (3.1) in the above inequality implies

Re

∫ 1

0

λ(t)

((
1− 1

δ

)
Φδ
µ,ν(tz) +

(
1

δ

)
Υδ
µ,ν(tz)− qδµ,ν(t)

)
dt > 0.

(3.9)

From equation (2.3) and (2.4), it is easy to see that

(
1− 1

δ

)
Φδ
µ,ν(tz) +

(
1

δ

)
Υδ
µ,ν(tz) =

∞∑
n=0

δ(n+ 1)(n+ δ)(tz)n

(δ + nν)(δ + nµ)
,

whose integral representation is given as

(
1− 1

δ

)
Φδ
µ,ν(tz)+

(
1

δ

)
Υδ
µ,ν(tz)(3.10)

=
δ2

µν

∫ 1

0

∫ 1

0

( (
1− 1

δ

)
(1−trsz)2 +

1
δ
(1+trsz)

(1− trsz)3

)
rδ/ν−1sδ/µ−1drds.

Thus, using (2.7) and (3.10) in (3.9) and on further using the fact that

Re
(

1
1−rstz

)2 ≥ 1
(1+rst)2

for z ∈ D, directly implies
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Re

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

((
1− 1

δ

)
1

(1−trsz)2 +

(
1

δ

)
1+trsz

(1− trsz)3

)
rδ/ν−1sδ/µ−1drds

−
∫ 1

0

∫ 1

0

((
1− 1

δ

)
1−ξ (1+trs)

(1−ξ) (1+trs)2 +

(
1

δ

)
1−trs−ξ (1+trs)

(1−ξ) (1 + trs)3

)
× rδ/ν−1sδ/µ−1drds

)
dt

≥
∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

((
1− 1

δ

)
1

(1+trs)2 +

(
1

δ

)
1−trs

(1 + trs)3

)
rδ/ν−1sδ/µ−1drds

−
∫ 1

0

∫ 1

0

((
1− 1

δ

)
1−ξ (1+trs)

(1−ξ) (1+trs)2 +

(
1

δ

)
1−trs−ξ (1+trs)

(1−ξ) (1 + trs)3

)
× rδ/ν−1sδ/µ−1drds

)
dt

=

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

((
1− 1

δ

)
ξtrs

(1−ξ) (1+trs)2 +

(
1

δ

)
2ξtrs

(1−ξ) (1 + trs)3

)
× rδ/ν−1sδ/µ−1drds

)
dt

=

∫ 1

0
λ(t)

(∫ 1

0

∫ 1

0

(
1 + trs+

1

δ
(1− trs)

)
ξtrs

(1−ξ) (1 + trs)3 r
δ/ν−1sδ/µ−1drds

)
dt > 0.

Thus, Re
(
z2−δ(Fδ)

δ−1(Fδ)
′)′ > 0, means that the function z2−δ(Fδ)

δ−1(Fδ)
′

is univalent in D.
In the next part of the theorem the following two cases are discussed to

show the order of starlikeness condition for the function z2−δ(Fδ)
δ−1(Fδ)

′.
Case (i). Let γ = 0 (µ = 0, ν = α ≥ 0). The function H(z) defined

in (3.4) decreases to

H(z) =
α

δ
z1−δ/α

(
zδ/α

(
f

z

)δ)′
.

Thus using duality principle, it is easy to see that

(
f

z

)δ
= β +

δ(1− β)

αzδ/α

∫ z

0

ωδ/α−1

(
1 + xω

1 + yω

)
dω,(3.11)
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where |x| = |y| = 1 and z ∈ D. A famous result from the theory of
convolution [15, P. 94] states that, if

g ∈ S∗(ξ)⇐⇒ 1

z
(g ∗ hξ)(z) 6= 0,(3.12)

where hξ(z) is defined in (3.2).
For the function f(z)∈Wδ

β(α, 0), the generalized integral operator Fδ
defined in (1.1), belongs to the class Cδ(ζ) with the conditions

(
1− 1

δ

)
≤

ζ ≤
(
1− 1

2δ

)
and δ ≥ 1, is equivalent of getting z

(
Fδ
z

)δ ( z(Fδ)′
Fδ

)
∈ S∗(ξ),

where ξ is defined by the hypothesis, ξ := 1− δ(1− ζ) and 0 ≤ ξ ≤ 1/2.
Therefore, (3.3) and (3.12) leads to

z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

)
∈ S∗(ξ)⇐⇒ 0 6= 1

z

(
z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

)
∗ hξ(z)

)
.

Further, using logarithmic derivative of (1.1) in the above expression
gives

0 6=
∫ 1

0

λ(t)

(
f(tz)

tz

)δ (
tzf ′(tz)

f(tz)

)
dt ∗ hξ(z)

z

=

∫ 1

0

λ(t)

1− tz
dt ∗

(
f(z)

z

)δ (
zf ′(z)

f(z)

)
∗ hξ(z)

z
.(3.13)

Now, using a simple computation involving z(f/z)′, it is easy to see that
(3.13) is equivalent to

0 6=
∫ 1

0

λ(t)

1− tz
dt ∗

((
1− 1

δ

)(
f(z)

z

)δ
+

1

δ

(
z

(
f(z)

z

)δ)′)
∗ hξ(z)

z

=

∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt ∗

(
f(z)

z

)δ
.

Substituting the value of (f/z)δ from (3.11) will give

0 6=
(∫ 1

0
λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt

)
∗
(
β +

δ(1− β)

αzδ/α

∫ z

0
ωδ/α−1

(
1 + xω

1 + yω

)
dω

)
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= (1− β)

(∫ 1

0
λ(t)

(
δ

αzδ/α

∫ z

0
ωδ/α−1

((
1− 1

δ

)
hξ(tω)

tω
+

1

δ
h′ξ(tω)

)
dω

)
dt

+
β

1− β

)
∗ 1 + xz

1 + yz
.

Again from [15, Pg. 23] the above expression is true if, and only if,

Re (1− β)

(∫ 1

0
λ(t)

(
δ

αzδ/α

∫ z

0
ωδ/α−1

((
1− 1

δ

)
hξ(tω)

tω
+

1

δ
h′ξ(tω)

)
dω

)
dt

+
β

1− β

)
>

1

2

or equivalently,

Re (1− β)

(∫ 1

0
λ(t)

(
δ

αzδ/α

∫ z

0
ωδ/α−1

((
1− 1

δ

)
hξ(tω)

tω
+

1

δ
h′ξ(tω)

)
dω

)
dt

+
β − 1

2

1− β

)
> 0.

Using the condition on β given in (3.1), the above inequality reduces to

Re

∫ 1

0

λ(t)

(
δ

αzδ/α

∫ z

0

ωδ/α−1

((
1− 1

δ

)
hξ(tω)

tω
+

1

δ
h′ξ(tω)

)
dω

−qδ0,α(t)

)
dt ≥ 0.

Changing the variable tω = u, integrating by parts with respect to t and
on further using (2.5) and (2.8), the above inequality gives

Re

∫ 1

0

Λδ
α(t)

d

dt

(
δ

αzδ/α

∫ tz

0

uδ/α−1

((
1− 1

δ

)
hξ(u)

u
+

1

δ
h′ξ(u)

)
du

−tδ/αqδ0,α(t)

)
dt ≥ 0

or equivalently,
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Re

∫ 1

0

tδ/α−1Λδα(t)

[(
1− 1

δ

)(
hξ(tz)

tz
− 1− ξ(1 + t)

(1− ξ)(1 + t)2

)
+

(
1

δ

)(
h′ξ(tz)−

1− t− ξ(1 + t)

(1− ξ)(1 + t)3

)]
dt ≥ 0.

Case (ii). Let γ > 0 (µ > 0, ν > 0). Using the conditions (3.3) and
(3.12), the integral transform V δ

λ (Wδ
β(α, γ)) ⊂ Cδ(ζ), for 1 − 1

δ
≤ ζ ≤(

1− 1
2δ

)
, δ ≥ 1 is equivalent of getting

0 6= 1

z

(
z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

)
∗ hξ(z)

)
,

where ξ = 1− δ(1− ζ) and 0 ≤ ξ ≤ 1/2. Hence using (3.7) and (3.13), a
simple computation similar to case (i) reduces the above expression to

0 6=
∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt ∗

(
f(z)

z

)δ
.

Using (3.7) in the above inequality provides

0 6=
∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt ∗

[
β + (1− β)

(
1 + xz

1 + yz

)]
∗ ψδµ,ν(z)

=(1− β)

(∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt+

β

1− β

)
∗ ψδµ,ν(z) ∗

(
1 + xz

1 + yz

)
.

which is true if, and only if,

Re (1− β)

(∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt+

β

1− β

)
∗ψδµ,ν(z) >

1

2

or equivalently,

Re (1− β)

(∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)

)
dt+

β − 1
2

1− β

)
∗ψδµ,ν(z) > 0.
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Using the condition on β given in (3.1), the above inequality becomes

Re

∫ 1

0

λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)− qδµ,ν(t)

)
dt ∗ ψδµ,ν(z) ≥ 0

which on further using (2.2) leads to

Re

∫ 1

0
λ(t)

((
1− 1

δ

)
hξ(tz)

tz
+

1

δ
h′ξ(tz)− qδµ,ν(t)

)
dt

∗
∫ 1

0

∫ 1

0

1

(1− uν/δ/vµ/δz)
dudv ≥ 0

or equivalently,

Re

∫ 1

0
λ(t)

(
δ2

µν

∫ 1

0

∫ 1

0

((
1− 1

δ

)
hξ(tzrs)

tzrs
+

1

δ
h′ξ(tzrs)

)
rδ/ν−1sδ/µ−1drds

−qδµ,ν(t)

)
dt ≥ 0.

Changing the variable tr = ω, integrating with respect to t and using
(2.8) leads to

Re

∫ 1

0
Λδν(t)

d

dt

(
δ2

µν

∫ t

0

∫ 1

0

((
1− 1

δ

)
hξ(ωzs)

ωzs
+

1

δ
h′ξ(ωzs)

)
ωδ/ν−1sδ/µ−1dsdω

−tδ/νqδµ,ν(t)

)
dt>0.

Further, using (2.6) reduces the above inequality to

Re

∫ 1

0

Λδ
ν(t)t

δ/ν−1

(∫ 1

0

((
1− 1

δ

)(
hξ(stz)

stz
− 1− ξ(1 + st)

(1− ξ)(1 + st)2

)
+

(
1

δ

)(
h′ξ(stz)− 1− st− ξ(1 + st)

(1− ξ)(1 + st)3

))
sδ/µ−1ds

)
dt ≥ 0.

Changing the variable ts = η, in the above expression, integrating with
respect to t and using (2.9) gives

Re

∫ 1

0

Πδ
µ,ν(t)

d

dt

(∫ t

0

((
1− 1

δ

)(
hξ(ηz)

ηz
− 1− ξ(1 + η)

(1− ξ)(1 + η)2

)
+

(
1

δ

)(
h′ξ(ηz)− 1− η − ξ(1 + η)

(1− ξ)(1 + η)3

))
ηδ/µ−1dη

)
dt ≥ 0
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or equivalently,

Re

∫ 1

0
Πδ
µ,ν(t)tδ/µ−1

[(
1− 1

δ

)(
hξ(tz)

tz
− 1−ξ(1+t)

(1−ξ)(1+t)2

)
+

(
1

δ

)(
h′ξ(tz)−

1−t−ξ(1+t)

(1−ξ)(1+t)3

)]
dt≥0

which clearly implies that the function MΠδµ,ν
(hξ) ≥ 0 and the proof is

complete.
Now, to validate the condition of sharpness for the function f(z) ∈

Wδ
β(α, γ), satisfying the differential equation

µν

δ2
z1−δ/µ

(
zδ/µ−δ/ν+1

(
zδ/ν

(
f

z

)δ)′)′
= β + (1− β)

1 + z

1− z
(3.14)

with the parameter β < 1 defined in (3.1). From (3.14), a simple calcu-
lation gives

(
f

z

)δ
= 1 + 2(1− β)

∞∑
n=1

δ2zn

(δ + nν)(δ + nµ)
.(3.15)

Substituting (3.15) in (3.7) will give

z

(
f

z

)δ (
zf ′

f

)
= z + 2(1− β)

∞∑
n=1

(n+ δ)δzn+1

(δ + nν)(δ + nµ)
.(3.16)

Further, substituting (3.16) in the expression involving the logarithmic
derivative of (1.1) leads to

z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

)
=

∫ 1

0

λ(t)

t
tz

(
f(tz)

tz

)δ (
tzf ′(tz)

f(tz)

)
dt

= z + 2(1− β)
∞∑
n=1

(n+ δ)δτnz
n+1

(δ + nν)(δ + nµ)
(3.17)

where τn =
∫ 1

0
tnλ(t)dt. Differentiating (3.17) will give

(
z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

))′
= 1 + 2(1− β)

∞∑
n=1

(n+ 1)(n+ δ)δτnz
n

(δ + nν)(δ + nµ)
.
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which clearly implies

z

(
z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

))′∣∣∣∣∣
z=−1

= −1− 2(1− β)
∞∑
n=1

(−1)n(n+ 1− ξ)(n+ δ)δτn
(δ + nν)(δ + nµ)

+2(1− β)ξ
∞∑
n=1

(−1)n+1(n+ δ)δτn
(δ + nν)(δ + nµ)

.(3.18)

The series expansion of the function qδµ,ν(t) defined in (2.7) is

qδµ,ν(t) = 1 +
δ

(1− ξ)

∞∑
n=1

(n+ δ)(n+ 1− ξ)(−1)ntn

(δ + nν)(δ + nµ)
.(3.19)

whose representation in the form of generalized hypergeometric function
is given as

qδµ,ν(t) = 5F4

(
1, (1 + δ), (2− ξ), δ

µ
,
δ

ν
; δ, (1− ξ),

(
1 +

δ

µ

)
,

(
1 +

δ

ν

)
; − t

)
.

(3.20)

Using (3.19) in (3.1) gives(
β − 1

2

)
(1− β)

= −1− δ

(1− ξ)

∞∑
n=1

(n+ δ)(n+ 1− ξ)(−1)nτn
(δ + nν)(δ + nµ)

.(3.21)

From (3.17) and (3.21), the expression (3.18) is equivalent to

z

(
z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

))′∣∣∣∣∣
z=−1

= ξ z

(
Fδ
z

)δ (
z(Fδ)

′

Fδ

)∣∣∣∣∣
z=−1

,

which means that the result is sharp.

Remark 3.1.

1. For δ = 1 and ξ = 0, Theorem 3.1 is similar to [2, Theorem 3.1].
2. For δ = 1, Theorem 3.1 reduces to [17, Theorem 3.1].

The condition MΠδµ,ν
(hξ) ≥ 0 derived in Theorem 3.1 is difficult to

use, therefore a simpler sufficient condition is presented in the next re-
sult.
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Theorem 3.2. Let µ ∈ [1/2, 1], ν ≥ 1 and
(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
,

where δ ≥ 1. Let β < 1 satisfy (3.1) and

t1/µ(δ−1)
(
δ
(

1− 1
µ

)
Πδ
µ,ν(t)− t

(
Πδ
µ,ν(t)

)′)
(log(1/t))3−2δ(1−ζ)(3.22)

is decreasing on (0, 1). Then the function MΠδµ,ν
(hξ)(z) ≥ 0, where

ξ = 1− δ(1− ζ) and 0 ≤ ξ ≤ 1/2.

Proof. Since the function

MΠδµ,ν
(hξ)(z) =

∫ 1

0

tδ/µ−1Πδ
µ,ν(t)

((
1− 1

δ

)(
Re
hξ(tz)

tz
+

1− ξ(1 + t)

(1− ξ)(1 + t)2

)
+

(
1

δ

)(
Reh′ξ(tz)− 1− t− ξ(1 + t)

(1− ξ)(1 + t)3

))
dt,

where ξ = 1 − δ(1 − ζ) and 0 ≤ ξ ≤ 1/2. Equivalently, it can also be
written as

MΠδµ,ν
(hξ)(z) =

∫ 1

0

tδ/µ−1Πδ
µ,ν(t)

((
1− 1

δ

)(
Re
hξ(tz)

tz
+

1− ξ(1 + t)

(1− ξ)(1 + t)2

)
+
d

dt

(
1

δ

(
Re
hξ(tz)

z
− t(1− ξ(1 + t))

(1− ξ)(1 + t)2

)))
dt,

which on further simplification gives

MΠδµ,ν
(hξ)(z)=

(
1− 1

δ

)∫ 1

0
tδ/µ−1Πδ

µ,ν(t)

(
Re
hξ(tz)

tz
+

1−ξ(1+t)

(1−ξ)(1+t)2

)
dt

(3.23)

+

∫ 1

0
tδ/µ−1

(
1

δ

)((
1− δ

µ

)
Πδ
µ,ν(t)−t

(
Πδ
µ,ν(t)

)′)(
Re
hξ(tz)

tz
+

1−ξ(1+t)

(1−ξ)(1+t)2

)
dt

=

∫ 1

0
tδ/µ−1

((
1− 1

µ

)
Πδ
µ,ν(t)−

(
1

δ

)
t
(

Πδ
µ,ν(t)

)′)(
Re
hξ(tz)

tz
− 1− ξ(1 + t)

(1−ξ)(1 + t)2

)
dt.

The right side of (3.23) is bounded from below. So, due to the existence
of lower bound, the minimum principle states that, the minimum value
of (3.23) lies on the boundary i.e., on |z| = 1, where z 6= 1. Now,
minimizing Re(hξ(tz)/(tz)) with respect to ε will give
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Re
hξ(tz)

tz
≥ 1

2(1− ξ)

(
Re

2(1− ξ) + (2ξ − 1)tz

(1− tz)2
− t

|1− tz|2

)
.

Hence, (3.23) is equivalent of obtaining

∫ 1

0

tδ/µ−1

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t)− t

(
Πδ
µ, ν(t)

)′)
(

Re
2(1− ξ) + (2ξ − 1)tz

(1− tz)2
− t

|1− tz|2
− 2(1− ξ(1 + t))

(1 + t)2

)
dt ≥ 0.

The equality of the above integral exist at z = −1. Since |z| = 1 and
z 6= 1, now letting Rez = y will reduce it to considering

H
(ξ)
Π (y)=

∫ 1

0

tδ/µ−1

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t)− t

(
Πδ
µ, ν(t)

)′)
(
t(3−4(1+y)t+2(4y−1)t2+4(y−1)t3−t4)

(1− 2yt+ t2)2(1 + t)2
− 2ξ(1− t)

(1−2yt+t2)(1+t)

)
dt≥0

where |z| = 1 and z 6= 1, gives −1 ≤ y < 1. Since the term (1 + y) ≥ 0,

H
(ξ)
Π (y) can be written in the series form as

H
(ξ)
Π (y) =

∞∑
j=0

H
(ξ)
j,Π(1 + y)j, |1 + y| < 2.

An easy computation shows that the jth term of H
(ξ)
j,Π is a positive mul-

tiple of

H̃
(ξ)
j,Π =

∫ 1

0

tδ/µ−1

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t)− t

(
Πδ
µ, ν(t)

)′)
(sj(t)− 2ξuj(t))dt,

where

sj(t) :=
(j + 3)tj+1

(1 + t)2j+4

(
1− 2t+

j − 1

j + 3
t2
)

and uj(t) :=
tj+1

(1 + t)2j+4
(1− t2).

to give

sj(t)− 2ξuj(t) =
tj+1

(1 + t)2j+4
v(t),

with v(t) := ((j + 3)(1− 2t) + (j − 1)t2 − 2ξ(1− t2)).
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The function v(t) is decreasing on t ∈ (0, 1). At t = 0, v(t) is positive
and at t = 1, v(t) is negative, which clearly implies that the function

(sj(t)− 2ξuj(t)) has exactly one zero for t ∈ (0, 1). Set this zero by t
(ξ)
j .

Therefore, (sj(t)−2ξuj(t)) > 0, for 0 ≤ t < t
(ξ)
j and (sj(t)−2ξuj(t)) < 0,

for t
(ξ)
j < t < 1.

Now, define the functions

H̃
(ξ)
j =

∫ 1

0

t1/µ−1(sj(t)− 2ξuj(t))

(
log

(
1

t

))1+2ξ

dt(3.24)

and

Π̃δ,ξ
µ,ν(t) = t

1
µ

(δ−1)

(
δ

(
1− 1

µ

)
Πδ
µ,ν(t)− t

(
Πδ
µ,ν(t)

)′)

−
(t

(ξ)
j )

1
µ

(δ−1)

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t

(ξ)
j )− t(ξ)j

(
Πδ
µ, ν(t

(ξ)
j )
)′)

(log(1/t
(ξ)
j ))1+2ξ

(log(1/t))1+2ξ.

Since the hypothesis (3.22) of the theorem implies that the function

t
1
µ

(δ−1)
(
δ
(

1− 1
µ

)
Πδ
µ,ν(t)− t

(
Πδ
µ,ν(t)

)′)
(log(1/t))1+2ξ

is decreasing, where ξ = 1− δ(1− ζ) and 0 ≤ ξ ≤ 1/2, thus it is easy to
observe that the condition on (sj(t)− 2ξuj(t)) and the function Π̃δ,ξ

µ,ν(t)
have same sign for t ∈ (0, 1). Hence

0 ≤
∫ 1

0

t
1
µ
−1Π̃δ,ξ

µ,ν(t)(sj(t)− 2ξuj(t))dt

(3.25)

= H̃
(ξ)
j,Π −

(t
(ξ)
j )

1
µ

(δ−1)

(
δ
(

1− 1
µ

)
Πδ
µ, ν(t

(ξ)
j )− t(ξ)j

(
Πδ
µ, ν(t

(ξ)
j )
)′)

(log(1/t
(ξ)
j ))1+2ξ

H̃
(ξ)
j .

Using (2.8) and (2.9), we have(
Λδ
ν(t)
)′

= −λ(t)t−δ/ν and
(
Πδ
µ,ν(t)

)′
= −Λδ

ν(t)t
−δ/µ+δ/ν−1
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which clearly shows that

d

dt

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t)− t

(
Πδ
µ, ν(t)

)′)
=

d

dt

(
δ

(
1− 1

µ

)
Πδ
µ, ν(t) + tδ/ν−δ/µΛδ

ν(t)

)
= −δ

(
1− 1

ν

)
tδ/ν−δ/µ−1Λδ

ν(t)− t−δ/µλ(t) < 0.

for ν ≥ 1 and t ∈ (0, 1). Thus, the above condition implies

δ

(
1− 1

µ

)
Πδ
µ, ν(t)− t

(
Πδ
µ, ν(t)

)′
> 0.

Using similar arguments as in [9, Page 280] for the positivity of H̃
(ξ)
j

defined by (3.24), from (3.25), it follows that H̃
(ξ)
j,Π ≥ 0 and this completes

the proof.

4. Applications of theorem 3.2

To apply Theorem 3.2, for the case γ > 0 (µ > 0, ν > 0), it is required
to show that the function

t(δ−1)/µ
(
δ (1− 1/µ) Πδ

µ,ν(t)− t
(
Πδ
µ,ν(t)

)′)
(log(1/t))3−2δ(1−ζ)

is decreasing in the range t ∈ (0, 1), where µ ∈ [1/2, 1], ν ≥ 1, δ ≥ 1 and(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
. Since ξ = (1 − δ(1 − ζ)), thus using (2.9), the

above expression can be rewritten as

g(t) :=
δ
(

1− 1
µ

)
tδ/µ−1/µ Πδ

µ,ν(t) + tδ/ν−1/µ Λδ
ν(t)

(log(1/t))1+2ξ
,

where ξ ∈ [0, 1/2]. Note that the chosen function λ(t) satisfy the condi-
tion λ(1) = 0. Therefore, in the overall discussion, the assumed condi-
tions hold.
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Taking the derivative of g(t) and using (2.8) and (2.9) will give

g′(t) =
tδ/µ−1/µ−1h(t)(

log 1
t

)2(1+ξ)

[
δ

(
1− 1

µ

)
Πδ
µ,ν(t)

+

(
1 + δ

(
1

ν
− 1

)
log 1

t

h(t)

)
tδ/ν−δ/µΛδ

ν(t) −t1−δ/µ
log 1

t

h(t)
λ(t)

]
,

where the function h(t) := 1
µ
(δ − 1) log 1

t
+ (1 + 2ξ), which by simple

computation for 0 < t < 1, δ ≥ 1 and 0 ≤ ξ ≤ 1/2 gives h(t) ≥ 1.

Therefore, proving g′(t) ≤ 0 is equivalent of getting k(t) ≤ 0, where

k(t) :=δ

(
1− 1

µ

)
Πδ
µ,ν(t) +

(
1 + δ

(
1

ν
− 1

)
log 1

t

h(t)

)
tδ/ν−δ/µ Λδ

ν(t)

− t1−δ/µ
log 1

t

h(t)
λ(t).

Clearly k(1) = 0 implies that if k(t) is increasing function of t ∈ (0, 1)
then g′(t) ≤ 0. Hence, it is required to show that

k′(t) = tδ/ν−δ/µ−1 l(t)

h(t)
,

where

l(t) :=

(
δ

ν
− δ
)

Λδ
ν(t)

[(
δ

ν
− 1

µ

)
log

1

t
+ 1 + 2ξ − (1 + 2ξ)

h(t)

]
+ t1−δ/νλ(t)

[(
1

µ
− δ

ν
+ δ − 1

)
log

1

t
− 1− 2ξ +

(1 + 2ξ)

h(t)

]
− t2−δ/ν log

1

t
λ′(t) ≥ 0.

Now, using the hypothesis λ(1) = 0 implies that l(1) = 0. Therefore l(t)
is decreasing function of t ∈ (0, 1), i.e., if l′(t) ≤ 0, clearly means that
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the function g(t) is decreasing. Now, we calculate

l′(t) =δ

(
1− 1

ν

)
Λδν(t)

t

[(
δ

ν
− 1

µ

)
+

(
δ

µ
− 1

µ

)
(1 + 2ξ)

(h(t))2

]
+ t−δ/νλ(t)

[
(δ − 1)

(
1− 1

µ

)
log

1

t

+

(
δ

ν
− 1

µ
+ 2ξ(δ − 1)

)
− (δ − 1)(1 + 2ξ)

h(t)
+

(
δ

µ
− 1

µ

)
(1 + 2ξ)

(h(t))2

]
+ t1−δ/νλ′(t)

[(
1

µ
+ δ − 3

)
log

1

t
− 2ξ +

(1 + 2ξ)

h(t)

]
− log

1

t
t2−δ/νλ′′(t).

Thus, the function g′(t) ≤ 0 is counterpart of the following inequalities:

Λδ
ν(t)

[(
1

µ
− δ

ν

)
(h(t))2 − (1 + 2ξ)

(
δ

µ
− 1

µ

)]
≥ 0(4.1)

and

λ(t)

[(
δ

ν
− 1

µ
+ 2ξ(δ − 1)

)
+ (δ − 1)

(
1− 1

µ

)
log

1

t
(4.2)

−(δ − 1)(1 + 2ξ)

h(t)
+

(
δ

µ
− 1

µ

)
(1 + 2ξ)

(h(t))2

]
+ tλ′(t)

[(
1

µ
+ δ − 3

)
log

1

t
− 2ξ +

(1 + 2ξ)

h(t)

]
− log

1

t
t2λ′′(t) ≤ 0,

for ν ≥ 1 and t ∈ (0, 1). Letting (2− δ)/µ ≥ δ/ν implies that the
inequality (4.1) is true, which clearly means that the function g(t) is de-
creasing, if the inequality (4.2) holds along with the condition (2− δ)/µ ≥
δ/ν, for 1 ≤ δ < 2, µ ∈ [1/2, 1] and ν ≥ 1.

The function h(t) ≥ 1 and (1− δ/µ) + (δ/µ− 1/µ) /h(t) ≤ 0, for
1/2 ≤ µ ≤ 1 and δ ≥ 1. Thus the inequality (4.2) is true when

λ(t)

[(
1

µ
− δ

ν
− 2ξ(δ − 1)

)
+ (δ − 1)

(
1

µ
− 1

)
log

1

t
+

(
δ − δ

µ

)
(1 + 2ξ)

h(t)

]
+tλ′(t)

[(
3− δ − 1

µ

)
log

1

t
+ 2ξ − (1 + 2ξ)

h(t)

]
+ log

1

t
t2λ′′(t) ≥ 0.(4.3)

In order to use the above condition for the application purposes, we
consider the following. For the parameters A,B,C > 0, set

λ(t) = KtB−1(1− t)C−A−Bω(1− t),(4.4)
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where the function

ω(1− t) = 1 +
∞∑
n=1

xn(1− t)n, with xn ≥ 0, t ∈ (0, 1).

The constant K is chosen such that it satisfies normalization condition∫ 1

0
λ(t)dt = 1 and (C−A−B) > 0 which clearly implies that the function

λ(t) is zero at t = 1.
By an easy calculation, we get

λ′(t) =KtB−2(1− t)C−A−B−1

[(
(B − 1)(1− t)− (C −A−B)t

)
ω(1− t)

(4.5)

− t(1− t)ω′(1− t)
]
,

and

λ′′(t)

(4.6)

=KtB−3(1− t)C−A−B−2
[(

(B − 1)(B − 2)(1− t)2

− 2(B − 1)(C −A−B)t(1− t) + (C −A−B)(C −A−B − 1)t2
)
ω(1− t)

+
(

2(C −A−B)t− 2(B − 1)(1− t)
)
t(1− t)ω′(1− t) + t2(1− t)2ω′′(1− t)

]
.

Now, substituting the values of λ(t), λ′(t) and λ′′(t) given in (4.4), (4.5)
and (4.6), respectively in inequality (4.3) will give the corresponding
condition as

t2(1− t)2 log
1

t
ω′′(1− t) + t(1− t)X1(t)ω′(1− t) +X2(t)ω(1− t) ≥ 0

(4.7)

where

X1(t) := log
1

t

[
(1− t)

(
1

µ
+ δ − 2B − 1

)
+ 2(C −A−B)t

]
+ (1− t)

(
−2ξ +

(1 + 2ξ)

h(t)

)
.
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and

X2(t) :=

log
1

t

[
(1− t)2

[
(δ − 1)

(
1

µ
− 1

)
+ (1−B)

(
1

µ
+ δ −B − 1

)]
+ (C −A−B)t×[

(1− t)
(

1

µ
+ δ − 2B − 1

)
+ (C −A−B − 1)t

]]
+ (1− t)

[
(1− t)

[(
1

µ
− δ
ν
−2ξ(δ−B)

)
+

(
δ + 1−B − δ

µ

)
(1 + 2ξ)

h(t)

]
+ (C −A−B)t

[
−2ξ +

(1 + 2ξ)

h(t)

]]
.

Since the function ω(1 − t) = 1 +
∑∞

n=1 xn(1 − t)n, with the condition
xn ≥ 0, which clearly means that the function ω(1 − t), ω′(1 − t) and
ω′′(1− t) are non-negative for all values of t ∈ (0, 1). Therefore, proving
inequality (4.7), it suffice to show

X1(t) ≥ 0 and X2(t) ≥ 0.

Now, in this respect the following two cases are examined:

Case (i) Let 0 < B ≤ δ. By a simple adjustment, it can be easily
obtained that the inequality X1(t) ≥ 0 holds true if

log
1

t

[
(1− t)

(
1

µ
+ δ − 2B − 1

)
+ 2(C − A−B)t

]
≥ 2ξ(1− t),

where ξ = 1− δ(1− ζ), for
(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
. Since the right side

of the above inequality is positive for ξ ∈ [0, 1/2] and t ∈ (0, 1), hence
on using the condition

(1− t) ≤ (1 + t)

2
log

1

t
, t ∈ (0, 1),(4.8)

it is enough to get(
1

µ
+ δ − 1− 2B − ξ

)
(1− t) + 2(C − A−B − ξ)t ≥ 0.(4.9)

Further, the equivalent condition for X2(t) ≥ 0 is obtained. By the
assumed hypothesis (2− δ)/µ ≥ δ/ν directly implies 1/µ ≥ δ/ν. Now
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using this condition, the function X2(t) ≥ 0 is valid if

log
1

t

(
(C −A−B)t

[
(1− t)

(
1

µ
+ δ − 2B − 1

)
+ (C −A−B − 1)t

]
+(1− t)2

[
(δ − 1)

(
1

µ
− 1

)
+ (1−B)

(
1

µ
+ δ −B − 1

)])
+ (1− t)

(
(1− t)×[

−2ξ(δ −B)−
(

1

µ
+B − 1

)
(1 + 2ξ)

h(t)

]
− 2ξ(C −A−B)t

)
≥ 0.

or equivalently,

log
1

t

(
(C −A−B)t

[
(1− t)

(
1

µ
+ δ − 2B − 1

)
+ (C −A−B − 1)t

]
+(1− t)2

[
(δ − 1)

(
1

µ
− 1

)
+ (1−B)

(
1

µ
+ δ −B − 1

)])

≥(1− t)
(

2ξ(C −A−B)t+ (1− t)
[
2ξ(δ −B) +

(
1

µ
+B − 1

)
(1 + 2ξ)

h(t)

])
.

(4.10)

As 0 ≤ B ≤ δ, therefore using the conditions 0 ≤ ξ ≤ 1/2, 1/2 ≤ µ ≤ 1,
and (C−A−B) > 0, it is easy to check that the coefficient of (1− t) on
right side of the above expression is positive. Therefore, in view of the
inequality (4.8), the condition (4.10) holds true for t ∈ (0, 1) if

2

(
(C − A−B)t

[
(1− t)

(
1

µ
+ δ − 2B − 1

)
+ (C − A−B − 1)t

]
+(1− t)2

[
(δ − 1)

(
1

µ
− 1

)
+ (1−B)

(
1

µ
+ δ −B − 1

)])
≥(1 + t)

(
2ξ(C − A−B)t+ (1− t)

[
2ξ(δ −B) +

(
1

µ
+B − 1

)
(1 + 2ξ)

h(t)

])
or equivalently,

(1− t)2

[
2(δ − 1)

(
1

µ
− 1

)
+ 2(1−B)

(
1

µ
+ δ −B − 1

)
+R(t)

]
+2t(1− t)

[
(C − A−B)

(
1

µ
+ δ − 2B − 1− ξ

)
+R(t)

]
+2t2(C − A−B)(C − A−B − 1− 2ξ) ≥ 0,(4.11)
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where

R(t) :=

(
− 1

µ
+ 1−B

)
(1 + 2ξ)

h(t)
− 2ξ(δ −B).

Consequently, the condition (4.11) holds good if the coefficients of t2,
t(1− t), and (1− t)2 are positive. Now it remains to prove the following
inequalities:

(C − A−B)(C − A−B − 1− 2ξ) ≥ 0,(4.12)

(C − A−B)

(
1

µ
+ δ − 2B − 1− ξ

)
+R(t) ≥ 0,(4.13)

and

2(δ − 1)

(
1

µ
− 1

)
+ 2(1−B)

(
1

µ
+ δ −B − 1

)
+R(t) ≥ 0,(4.14)

where ξ = 1− δ + δζ,
(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
and δ ≥ 1.

Case (ii) Consider the case when B ≥ δ. It is easy to observe that the
condition (4.9) is true when(

1

µ
+ δ − 1− ξ

)
≥ 2B,

which clearly implies when B ≤ δ. Hence this case is not valid.
With the availability of the conditions given above we prove the result

for the case γ > 0 (µ > 0, ν > 0) and λ(t) defined in (4.4).

Theorem 4.1. Let A,B,C > 0, 1/2 ≤ µ ≤ 1 ≤ ν and 1 − 1
δ
≤ ζ ≤

1− 1
2δ

, for 1 ≤ δ ≤ 2. Let β < 1 satisfy

β − 1
2

1− β
= −K

∫ 1

0

tB−1(1− t)C−A−Bω(1− t)qδµ,ν(t)dt,

where qδµ,ν(t) is defined by the differential equation (2.6), the constant

K and the function ω(1− t) is given in (4.4). Then for f(z) ∈ Wδ
β(α, γ),

the function

Hδ
A,B,C(f)(z) =

(
K

∫ 1

0

tB−1(1− t)C−A−Bω(1− t)
(
f(tz)

t

)δ
dt

)1/δ

belongs to Cδ(ζ) for the condition (2− δ)/µ ≥ δ/ν, if

C ≥ A+B + 2 and B ≤ min

{
1

4

(
1

µ
− 3 + δ(3− 2ζ)

)
,

2

(δ + 1/µ)

(
(2δ − 1)

µ
− δ + 1

)}
.
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Proof. In order to prove the result, it is enough to get the inequalities
(4.9), (4.12), (4.13) and (4.14) by using the above hypothesis.

The inequalities (4.9) and (4.12) are true if (C−A−B) ≥ 1 + 2ξ and
2B ≤ (1/µ + δ − 1 − ξ), where ξ = 1 − δ(1 − ζ). Since the parameters
(C − A − B) > 2 and 4B ≤ (1/µ + δ − 1 − 2ξ), directly implies that
these two inequalities hold. Moreover, to show the existence of inequality
(4.13) under the given hypothesis, it is enough to prove

(C − A−B)

(
1

µ
+ δ − 2B − 1− ξ

)
≥
(

1

µ
+ δ − 1

)
or equivalently,

(C − A−B − 2)

(
1

µ
+ δ − 2B − 1− ξ

)
+

(
1

µ
+ δ − 1− 2ξ − 4B

)
≥ 0,

that can be shown easily. Finally, to prove inequality (4.14), it is suffi-
cient to get

2(δ − 1)

(
1

µ
− 1

)
+ 2(1−B)

(
1

µ
+ δ −B − 1

)
≥
(

1

µ
+ δ − 1

)
.

By simple computation, the above condition is true if(
2δ

µ
− 1

µ
− δ + 1

)
− 2B

(
δ +

1

µ

)
≥ 0,

which is clearly true. Hence by the given hypothesis and Theorem 3.2,
the result directly follows.

So far, the case γ > 0 was discussed in detail. Now, to apply Theorem
3.1 for the case γ = 0 (µ = 0, ν = α ≥ 0), it is required to show that
the function

a(t) :=
δ
(
1− 1

α

)
t(δ−1)/αΛδ

α(t) + t1−1/αλ(t)

(log(1/t))1+2ξ

is decreasing on t ∈ (0, 1), where ξ = 1 − δ(1 − ζ), for 1/2 ≤ α ≤ 1,
0 ≤ ξ ≤ 1/2 and δ ≥ 1. Now, differentiating a(t) and on using (2.8) will
give

a′(t) =
p(t) tδ/α−1/α−1

(log(1/t))2+2ξ
b(t),
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where

b(t) :=δ

(
1− 1

α

)
Λδ
α(t) +

(
1− (δ − 1) log(1/t)

p(t)

)
t1−δ/αλ(t)

+
log(1/t)

p(t)
t2−δ/αλ′(t)

and

p(t) :=
1

α
(δ − 1) log

1

t
+ (1 + 2ξ).

When δ ≥ 1, α ∈ [1/2, 1] and ξ ∈ [0, 1/2], it can be easily seen that the
function p(t) ≥ 1, for t ∈ (0, 1). Hence, proving a′(t) ≤ 0 is equivalent
of getting b(t) ≤ 0. Assuming λ(1) = 0 will give b(1) = 0. Hence, if b(t)
is increasing function of t ∈ (0, 1), then a′(t) ≤ 0 and this completes the
proof. Now

b′(t) =
t−δ/α

p(t)

[
(δ − 1)λ(t)

((
1

α
− 1

)
log

1

t
− 1− 2ξ +

(1 + 2ξ)

p(t)

)
+tλ′(t)

((
3− δ − 1

α

)
log

1

t
+ 1 + 2ξ − (1 + 2ξ)

p(t)

)
+ log

1

t
t2λ′′(t)

]
.

Therefore, b′(t) ≥ 0, if

(δ − 1)λ(t)

((
1

α
− 1

)
log

1

t
− 1− 2ξ +

(1 + 2ξ)

p(t)

)

+ tλ′(t)

((
3− δ − 1

α

)
log

1

t
+ 1 + 2ξ − (1 + 2ξ)

p(t)

)
+ log

1

t
t2λ′′(t) ≥ 0.

(4.15)

Now, using λ(t), λ′(t) and λ′′(t) given in (4.4), (4.5) and (4.6), respec-
tively in inequality (4.15), will give the corresponding condition as

t2(1− t)2 log
1

t
ω′′(1− t) + t(1− t) X3(t) ω′(1− t) +X4(t)ω(1− t) ≥ 0

(4.16)

where

X3(t) := log
1

t

[
(1− t)

(
1

α
+ δ − 2B − 1

)
+ 2(C −A−B)t

]
− (1 + 2ξ)(1− t)

[
1− 1

p(t)

]
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and

X4(t) := log
1

t

[
(1− t)2

[
(δ − 1)

(
1

α
− 1

)
+ (1−B)

(
1

α
+ δ −B − 1

)]
+(C − A−B)t×

[
(1− t)

(
1

α
+ δ − 2B − 1

)
+ (C − A−B − 1)t

]]
+ (1 + 2ξ)(1− t)

(
(B − δ)(1− t)− (C − A−B)t

)[
1− 1

p(t)

]
.

As, the functions ω(1− t), ω′(1− t) and ω′′(1− t) are non-negative for
all values of t ∈ (0, 1), therefore to prove inequality (4.16), it is enough
to show

X3(t) ≥ 0 and X4(t) ≥ 0.

Now, we divide the proof into two cases:
Case (i) Let 0 < B ≤ δ. Since the function p(t) defined before is non-
negative, therefore by a small adjustment, the inequality X3(t) ≥ 0 is
valid, if

log
1

t

[
(1− t)

(
1

α
+ δ − 2B − 1

)
+ 2(C − A−B)t

]
≥ (1 + 2ξ)(1− t),

where the parameter ξ is defined above. It is easy to see that the right
side of the above inequality is positive, hence applying the condition
(4.8), the inequality is true when

(1− t)
[
2

(
1

α
+ δ − 2B − ξ

)
− 3

]
+ 2t

[
2(C − A−B − ξ)− 1

]
≥ 0.

(4.17)

By the assumptions B ≤ δ and (C −A−B) > 0, the condition X4 ≥ 0,
holds good if

log
1

t

(
(1− t)2

[
(δ − 1)

(
1

α
− 1

)
+ (1−B)

(
1

α
+ δ −B − 1

)]
+(C − A−B)t×

[
(1− t)

(
1

α
+ δ − 2B − 1

)
+ (C − A−B − 1)t

])
≥(1 + 2ξ)(1− t)

(
(δ −B)(1− t) + (C − A−B)t

)
.

For t ∈ (0, 1), the right side term of the above inequality is positive,
hence in view of the condition (4.8), the above inequality can be obtained
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if

(1− t)2

[
2 (δ − 1)

(
1

α
− 1

)
+ 2(1−B)

(
1

α
+ δ −B − 1

)
− (1 + 2ξ)(δ −B)

]
+t(1− t)

[
(C −A−B)

(
2

(
1

α
+ δ − 2B − 1

)
− (1 + 2ξ)

)
− 2(1 + 2ξ)(δ −B)

]
+2t2(C −A−B)(C −A−B − 2− 2ξ) ≥ 0.(4.18)

Thus, the condition (4.18) is true, if the coefficients of t2, t(1− t), and
(1−t)2 are positive. Now, it remains to prove the following inequalities:

2 (δ − 1)

(
1

α
− 1

)
+ 2(1−B)

(
1

α
+ δ −B − 1

)
− (1 + 2ξ)(δ −B) ≥ 0,

(4.19)

(C −A−B)

(
2

(
1

α
+ δ − 2B − 1

)
− (1 + 2ξ)

)
− 2(1 + 2ξ)(δ −B) ≥ 0,

(4.20)

and

(C −A−B)(C −A−B − 2− 2ξ) ≥ 0(4.21)

where ξ = 1− δ(1− ζ), for
(
1− 1

δ

)
≤ ζ ≤

(
1− 1

2δ

)
and δ ≥ 1.

Case (ii) B ≥ δ. It is easy to note that the condition (4.17) is true
when

4B ≤ 2

(
1

α
+ δ − ξ

)
− 3,

which clearly means that B ≤ δ. Therefore this case is not valid.
Now, for the case γ = 0 (µ = 0, ν = α > 0) and λ(t) defined in (4.4),

the following result is stated as under.

Theorem 4.2. Let A,B,C > 0, 1/2 ≤ α ≤ 1 and 1− 1
δ
≤ ζ ≤ 1− 1

2δ
,

for δ ≥ 3. Let β < 1 satisfy

β − 1
2

1− β
= −K

∫ 1

0

tB−1(1− t)C−A−Bω(1− t)qδ0,α(t)dt,

where qδ0,α(t) is defined by the differential equation (2.5), the constant

K and the function ω(1− t) is given in (4.4). Then for f(z) ∈ Wδ
β(α, 0),

the function
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Hδ
A,B,C(f)(z) =

(
K

∫ 1

0

tB−1(1− t)C−A−Bω(1− t)
(
f(tz)

t

)δ
dt

)1/δ

belongs to Cδ(ζ), if

C ≥ A+B + 3 and B ≤ min

{
1

2

(
1

α
+ δ − 2

)
,
δ
(
1
α − 1

)(
1
α + δ − 1

) , 1

4

(
3

α
+ δ − 6

)}
.

Proof. In order to prove the result, it is enough to show the inequali-
ties (4.17), (4.19), (4.20) and (4.21) by using the above hypothesis. The
inequality (4.17) is valid if (C−A−B) ≥ 1 and 2B ≤ (1/α+δ−2), and
(4.19) is true when δ (1/α− 1) ≥ (1/α + δ − 1)B. Since the parameters
(C −A−B) ≥ 3 and conditions on B holds, which directly implies that
these two inequalities along with the condition (4.21) are true.

Further, to prove inequality (4.20), it is sufficient to get the condition

(C − A−B)

(
2

(
1

α
+ δ − 2B − 1

)
− (1 + 2ξ)

)
≥ 2(1 + 2ξ)(δ −B),

By simple computation, the above expression is holds, if

(C − A−B − 3)

(
1

α
+ δ − 2B − 2

)
+

(
3

α
+ δ − 4B − 6

)
≥ 0,

which is clearly true. Hence by the given hypothesis and Theorem 3.2
the result directly follows.

Let

λ(t) =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
tb−1(1− t)c−a−b 2F1

(
c− a, 1− a
c− a− b+ 1

; 1− t
)
,

then the integral operator (1.1) defined by the above weight function
λ(t) is the known as generalized Hohlov operator denoted by Hδ

a, b, c.
This integral operator was considered in the work of A. Ebadian [9] (see
also [7]). When δ = 1, the reduced integral transform was introduced by
Y. C. Kim and F. Ronning [11] and studied by several authors later. The
operator Hδ

a, b, c, with a = 1 is the generalized Carlson-Shaffer operator

(Lδb, c) [4].
Using the above operators the following results are obtained.
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Theorem 4.3. Let a, b, c > 0, γ ≥ 0 (µ ≥, ν ≥ 0) and 1 − 1
δ
≤ ζ ≤

1− 1
2δ

. Let β<1 satisfy

β

1−β
= − Γ(c)

Γ(a)Γ(b)Γ(c−a−b+1)

∫ 1

0

tb−1(1−t)c−a−b 2F1

(
c−a, 1−a
c−a−b+1

; 1−t
)
qδµ,ν(t)dt,

(4.22)

where qδµ,ν(t) is defined by the differential equation (2.6) for γ > 0, and

(2.5) for γ = 0. Then for f(z) ∈ Wδ
β(α, γ), the function Hδ

a, b, c(f)(z)
belongs to the class Cδ(ζ), whenever

(i)

b ≤ min

{
1

4

(
1

µ
− 3 + δ(3− 2ζ)

)
,

2

(δ + 1/µ)

(
(2δ − 1)

µ
− δ + 1

)}
and

c ≥ a+ b+ 2 for γ > 0 (1/2 ≤ µ ≤ 1 ≤ ν) and 1 ≤ δ ≤ 2,

(ii)

b ≤ min

{
1

2

(
1

α
+ δ − 2

)
,
δ
(

1
α
− 1
)(

1
α

+ δ − 1
) , 1

4

(
3

α
+ δ − 6

)}
and

c ≥ a+ b+ 3 for 1/2 ≤ α ≤ 1, γ = 0 and δ ≥ 3.

Proof. Choosing

K =
Γ(c)

Γ(a)Γ(b)Γ(c−a−b+1)
and ω(1− t) = 2F1

(
c− a, 1− a
c− a− b+ 1

; 1− t
)
,

in Theorem 4.1 and 4.2 for the case γ > 0 and γ = 0, respectively to get
the required result.

For a = 1, Theorem 4.3 lead to the following particular cases which are
of independent interest.

Corollary 4.1. Let b, c > 0, γ ≥ 0 (µ ≥ 0, ν ≥ 0) and 1− 1
δ
≤ ζ ≤

1− 1
2δ

. Let β < 1 satisfy

β

(1− β)
= − Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1qδµ,ν(t)dt,

where qδµ,ν(t) is defined by the differential equation (2.6) for γ > 0, and

(2.5) for γ = 0. Then for f(z) ∈ Wδ
β(α, γ), the function Lδb, c(f)(z)

belongs to the class Cδ(ζ), whenever
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(i)

b ≤ min

{
1

4

(
1

µ
− 3 + δ(3− 2ζ)

)
,

2

(δ + 1/µ)

(
(2δ − 1)

µ
− δ + 1

)}
and

c ≥ b+ 3 for γ > 0 (1/2 ≤ µ ≤ 1 ≤ ν) and 1 ≤ δ ≤ 2

(ii)

b ≤ min

{
1

2

(
1

α
+ δ − 2

)
,
δ
(

1
α
− 1
)(

1
α

+ δ − 1
) , 1

4

(
3

α
+ δ − 6

)}
and

c ≥ b+ 4 for 1/2 ≤ α ≤ 1, γ = 0 and δ ≥ 3

Corollary 4.2. Let b, c > 0, γ ≥ 0 (µ ≥ 0, ν ≥ 0) and 1− 1
δ
≤ ζ ≤

1− 1
2δ

. Let β0 < β < 1, where

β0 = 1− 11− 6F5

 1, b, (1 + δ), (2− ξ), δ
µ
,
δ

ν
,

c, δ, (1− ξ),
(

1 +
δ

µ

)
,

(
1 +

δ

ν

) ; − 1



.

Then, for f ∈ Wδ
β(α, γ), the function Lδb,c(f)(z) ∈ Cδ(ζ), whenever

(i)

b ≤ min

{
1

4

(
1

µ
− 3 + δ(3− 2ζ)

)
,

2

(δ + 1/µ)

(
(2δ − 1)

µ
− δ + 1

)}
and

c ≥ b+ 3 for γ > 0 (1/2 ≤ µ ≤ 1 ≤ ν) and 1 ≤ δ ≤ 2

(ii)

b ≤ min

{
1

2

(
1

α
+ δ − 2

)
,
δ
(

1
α
− 1
)(

1
α

+ δ − 1
) , 1

4

(
3

α
+ δ − 6

)}
and

c ≥ b+ 4 for 1/2 ≤ α ≤ 1, γ = 0 and δ ≥ 3

Proof. Putting a = 1 in (4.22) and on further using (3.20) will give

β

1−β
= − Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

tb−1(1−t)c−b−1 5F4

 1, (1 + δ), (2− ξ), δ
µ
,
δ

ν

δ, (1−ξ),
(

1+
δ

µ

)
,

(
1+

δ

ν

) ; − t

 dt

or equivalently,
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β

1− β
= − Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

tb−1(1−t)c−b−1

 ∞∑
n=0

(1 + δ)n(2− ξ)n
(
δ

µ

)
n

(
δ

ν

)
n

(−1)n

(δ)n(1− ξ)n
(
n+

δ

ν

)
n

(
n+

δ

µ

)
n

tn

 dt.

Now a simple computation leads to

β

1− β
= − 6F5

 1, b, (1 + δ), (2− ξ), δ
µ
,
δ

ν

c, δ, (1− ξ),
(

1 +
δ

µ

)
,

(
1 +

δ

ν

) ; − 1

 .

Thus, applying Theorem 4.3 will give the required result.

Consider

λ(t) =
(1 + k)p

Γ(p)
tk
(

log
1

t

)p−1

, p ≥ 0 k > −1.(4.23)

Then the integral operator (1.1) defined by the above weight function
λ(t) is the known as generalized Komatu operator denoted by (F δ

k, p).
This integral operator was considered in the work of A. Ebadian [9].
When δ = 1, the operator is reduced to the one introduced by Y. Komatu
[12].

Now, we state the following result.

Theorem 4.4. Let γ ≥ 0 (µ ≥, ν ≥ 0), k > −1, p ≥ 1 and 1 − 1
δ
≤

ζ ≤ 1 − 1
2δ

. Let β < 1 satisfy (3.1), where λ(t) is given in (4.23). Then

for f(z) ∈ Wδ
β(α, γ), the function F δ

k,p(f)(z) ∈ Cδ(ζ), whenever

(i)

− 1 < k ≤ min

{
1

4

(
1

µ
− 3 + δ(3− 2ζ)

)
− 1 ,

2

(δ + 1/µ)

(
(2δ − 1)

µ
− δ + 1

)
− 1

}
and p ≥ 1 for γ > 0 (1/2 ≤ µ ≤ 1 ≤ ν) and 1 ≤ δ ≤ 2,

(ii)

− 1 < k ≤ min

{
1

2

(
1

α
+ δ − 4

)
,
δ
(

1
α − 1

)(
1
α + δ − 1

) − 1 ,
1

4

(
3

α
+ δ − 10

)}
and p ≥ 2 for 1/2 ≤ α ≤ 1, γ = 0 and δ ≥ 3.
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Proof. Letting (C − A − B) = p − 1, B = k + 1 and ω(1 − t) =(
log(1/t)
(1−t)

)p−1

. Therefore λ(t) given in (4.4) can be represented as

λ(t) = Ktk(1− t)p−1ω(1− t), where K =
(1 + k)p

Γ(p)
.

Now, by the given hypothesis the result directly follows from Theorem
4.1 and 4.2 for the case γ > 0 and γ = 0, respectively.
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