DOI QR코드

DOI QR Code

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model

혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정

  • Jo, Seongil (Department of Statistics and Applied Probability, National University of Singapore) ;
  • Lee, Jaeyong (Department of Statistics, Seoul National University)
  • 조성일 (싱가포르 국립대학교 통계 및 응용확률학과) ;
  • 이재용 (서울대학교 통계학과)
  • Received : 2016.07.20
  • Accepted : 2016.09.02
  • Published : 2016.09.30

Abstract

This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

기상 자료의 경우 한 지역의 기후가 인접지역의 기후와 비슷한 양상을 띄고 각 지역의 확률 밀도 함수 (probability density function)가 잘 알려진 확률 모형을 따르지 않는다는 것이 알려져 있다. 본 논문에서는 이러한 특성을 고려하여 이상 기후 현상이 뚜렷히 나타나는 여름철 평균 극한 기온(extreme temperature)의 확률 밀도 함수를 추정하고자 한다. 이를 위하여 공간적 상관관계 (spatial correlation)를 고려하는 비모수 베이지안 (nonparametric Bayesian) 모형인 조건부 자기회귀 종추출 혼합모형 (mixtures of conditional autoregression species sampling model)을 이용하였다. 자료는 이스트앵글리아 대학교 (University of East Anglia)에서 제공하는 전 지구의 최대 기온과 최소 기온자료 중 우리나라에 해당하는 지역의 자료를 사용하였다.

Keywords

References

  1. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209-230. https://doi.org/10.1214/aos/1176342360
  2. Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association, 100, 1021-1035. https://doi.org/10.1198/016214504000002078
  3. Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science, 7, 457-511. https://doi.org/10.1214/ss/1177011136
  4. Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian data analysis, 2nd Ed., Chapman & Hall/CRC, Boca Raton, Florida.
  5. Griffiths, G. M., Chambers, L. E., Haylock, M. R., Manton, M. J., Nicholls, N., Baek, H., Choi, Y., Della-marta, P. M., Gosai, A., Iga, N., Lata, R., Laurent, V., Maitrepierre, L., Nakamigawa, H., Ouprasitwong, N., Solofa, D., Tahani, L., Thuy, D. T., Tibig, L., Trewin, B., Vediapan, K., and Zhai, P. (2005). Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. International Journal of Climatology, 25, 1301-1330. https://doi.org/10.1002/joc.1194
  6. Harris, I. Jones, P. D., Osborn, T. J. and Lister, D. H. (2013). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642, doi:10.1002/joc.3711.
  7. Im, E. and Kwon, W. (2007). Characteristics of extreme climate sequences over Korea using a regional climate change scenario. SOLA, 3, 17-20. https://doi.org/10.2151/sola.2007-005
  8. Intergovernmental Panel on Climate Change (2007). Climate changes: The physical science basis, Cambridge University Press, United Kingdom and New York.
  9. Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96, 161-137. https://doi.org/10.1198/016214501750332758
  10. Jo, S., Lee, J., Muller, P., Quintana, F. A. and Trippa, L. (2016). Dependent species sampling models for spatial density estimation. Bayesian Analysis, 1-28, doi:10.1214/16-BA1006.
  11. Jo, Y., Lim, Y., Kim, H. and Lee, J. (2012). Bayesian analysis for heat effects on mortality. Communications of the Korean Statistical Society, 19, 705-720.
  12. Kim, H., Jo, S. and Choi, T. (2015). Performance comparison of random generators based on adaptive rejection sampling. Journal of the Korean Data & Information Science Society, 26, 593-610. https://doi.org/10.7465/jkdi.2015.26.3.593
  13. Lee, J., Quintana, F., Muller, P. and Trippa, L. (2013). Defining predictive probability functions for species sampling models. Statistical Science, 28, 209-222. https://doi.org/10.1214/12-STS407
  14. Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. The Annals of Statistics, 12, 351-357. https://doi.org/10.1214/aos/1176346412
  15. Mearns, L. O., Katz, R. W. and Schneider, S. H. (1984). Extreme high-temperature events: changes in their probabilities with changes in mean temperature. Journal of Climate and Applied Meteorology, 23, 1601-1613. https://doi.org/10.1175/1520-0450(1984)023<1601:EHTECI>2.0.CO;2
  16. Meehl, G. A., Karl, T., Easterling, D. R., Changnon, S., Pielke Jr., R., Changnon, D., Evans, J., Groisman, P. Y., Knutson, T. R., Kunkel, K. E., Mearns, L. O., Parmesan, C., Pulwarty, R., Root, T., Sylves, R. T., Whetton, P. and Zwiersl, F. (2000). An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bulletin of the American Meteorological Society, 81, 413-416. https://doi.org/10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
  17. Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
  18. National Institute of Meteorological Research (2009). Understaning climate changes, Technical Report, Available from http://climate.go.kr/home/bbs/dw_proc.php.
  19. Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Annals of Probability, 25, 855-900. https://doi.org/10.1214/aop/1024404422
  20. Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of Computational and Graphical Statistics, 18, 349-367. https://doi.org/10.1198/jcgs.2009.06134
  21. Scott, S. L. (2011). Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models. Statistical Papers, 52, 639-650.
  22. Seo, J. and Kim, Y. (2014). Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values. Journal of the Korean Data & Information Science Society, 25, 611-622. https://doi.org/10.7465/jkdi.2014.25.3.611

Cited by

  1. 베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구 vol.28, pp.1, 2016, https://doi.org/10.7465/jkdi.2017.28.1.153