DOI QR코드

DOI QR Code

Generating high resolution of daily mean temperature using statistical models

통계적모형을 통한 고해상도 일별 평균기온 산정

  • Yoon, Sanghoo (Department of Statistics and Computer Science, Daegu University)
  • Received : 2016.08.31
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

Climate information of the high resolution grid units is an important factor to explain the phenomenon in a variety of research field. Statistical linear interpolation models are computationally inexpensive and applicable to any climate data compared to the dynamic simulation method at regional scales. In this paper, we considered four different linear-based statistical interpolation models: general linear model, generalized additive model, spatial linear regression model, and Bayesian spatial linear regression model. The climate variable of interest was the daily mean temperature, where the spatial variability was explained using geographic terrain information: latitude, longitude, elevation. The data were collected by weather stations in January from 2003 and 2012. In the sense of RMSE and correlation coefficient, Bayesian spatial linear regression model showed better performance in reflecting the spatial pattern compared to the other models.

고해상도 격자 단위 기후정보는 농업, 관광학, 생태학, 질병학 등 다양한 분야의 현상을 설명하는 중요 요인이다. 고해상도 기후정보는 동적 모형과 통계적 모형을 통해 얻을 수 있다. 통계적 모형은 동적 모형에 비해 계산 시간이 저렴하여 시공간 해상도가 높은 기후자료 생성에 주로 이용한다. 본 연구에서는 2003년부터 2012년까지 1월에 관측된 일 평균기온자료를 토대로 통계적 모형의 일 평균 기온을 생성하였다. 통계적 모형으로 선형모형을 기반으로한 일반선형모형, 일반화가법모형, 공간선형모형, 베이지안공간선형모형을 고려하였다. 예측성능평가를 위해 60개소의 지상관측소에서 관측된 일 평균기온을 모형적합 자료로 사용하여 352개소의 자동기상관측의 일 평균기온을 검증하였다. 평균제곱오차와 상관계수를 보면 베이지안공간모형의 예측성능이 다른 모형에 비해 상대적으로 우수하였다. 최종적으로 $1km{\times}1km$ 격자 단위 일 평균기온 지도를 생성하였다.

Keywords

References

  1. Ahn, J. B., Lee, J. and Im, E. S. (2012). he reproducibility of surface air temperature over south Korea using dynamical downscaling and statistical correction. Journal of Meteorological Society Japan, 90, 493-507. https://doi.org/10.2151/jmsj.2012-404
  2. Ahn, J. B., Hur, J. and Lim, A.Y. (2014). Estimation of fine-scale daily temperature with 30m-resolution using PRISM. Atmosphere, 24, 101-110. https://doi.org/10.14191/Atmos.2014.24.1.101
  3. Ahres, C. D. (2012). Meteorology today: An introduction to weather, climate, and the environment, Cengage Learning, California.
  4. Andrew, O.F., Banerjee, S. and Gelfand, A.E. (2015). spBayes for large univariate and multivariate point-referenced spatio-temporal data models. Journal of Statistical Software, 63, 1-28.
  5. Benerjee, S., Gelfand, A.E. and Carlin, B.P. (2004). Hierarchical modeling and analysis for spatial data, CRC Press, Boca Raton.
  6. Brunetti, M., Maugeri, M., Nanni, T., Simolo, C. and Spinoni, J. (2014). High?resolution temperature climatology for Italy: Interpolation method intercomparison. International Journal of Climatology, 34, 1278-1296. https://doi.org/10.1002/joc.3764
  7. Chatterjee, S. and Price, B. (1997). Regression analysis by example, Wiley, New York.
  8. Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L. and Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate research, 22, 99-113. https://doi.org/10.3354/cr022099
  9. Daly, C., Helmer, E. H. and Quinones, M. (2003). Mapping the climate of Puerto Rico, Vieque and Culebra. International Journal of Climatology, 23, 1359-1138. https://doi.org/10.1002/joc.937
  10. Daly, C., Neilson, R. P. and Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of applied meteorology, 33, 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  11. Heo, M. H. (2014). Applied data analysis using R, Free Academy, Paju.
  12. Jeong, D. I., St-Hilaire, A., Ouarda, T. B. M. J. and Gachon, P. (2012). Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stochastic environmental research and risk assessment, 26, 633-653. https://doi.org/10.1007/s00477-011-0523-3
  13. Jung, J. Y., Jin, S. H. and Park, M. S. (2008). Precipitation analysis based on spatial linear regression model. Korean Journal of Applied Statistics, 21, 1093-1107. https://doi.org/10.5351/KJAS.2008.21.6.1093
  14. Kim, M. K., Han, M. S., Jang, D. H., Baek, S. G., Lee, W. S., Kim, Y. H. and Kim, S. (2012). Production technique of observation grid data of 1 km resolution. Journal of climate research, 7, 55-68.
  15. Kwon, H. J. and Kim, Y. (2016). A statistical prediction for concentrations of Manganese in the ambient air. Journal of the Korean Data & Information Science Society, 27, 577-586. https://doi.org/10.7465/jkdi.2016.27.3.577
  16. Lee, H. J. (2014).Analysis of statistical models on temperature at the Seosan city in Korea. Journal of the Korean Data & Information Science Society, 25, 1293-1300. https://doi.org/10.7465/jkdi.2014.25.6.1293
  17. Lee, H. J. (2015). Analysis of statistical models on temperature at the Suwon city in Korea. Journal of the Korean Data & Information Science Society, 26, 1409-1416. https://doi.org/10.7465/jkdi.2015.26.6.1409
  18. Moon, H. W., Baek, J. J., Hwang, S. W. and Choi, M. H. (2014). Spatial downscaling of grid precipitation using support vector machine regression. Journal of the Korean Water Resources Association, 47, 1095-1105. https://doi.org/10.3741/JKWRA.2014.47.11.1095
  19. Park, C. K., Lee, W. S. and Yun, W. T. (2008). Statistical downscaling for multi-model ensemble prediction of summer monsoon rainfall in the Asia-Pacific region using geopotential height field. Advances in Atmospheric Sciences, 25, 867-884. https://doi.org/10.1007/s00376-008-0867-x
  20. Park, J. S. and Baek, J. (2001). Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram. Computers & Geosciences, 27, 1-7. https://doi.org/10.1016/S0098-3004(00)00016-9
  21. Roustant, O., Ginsbourger, D. and Deville, Y. (2012). DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software, 51, 1-55.
  22. Skourkeas, A., Kolyva-Machera, F. and Maheras, P. (2010). Estimation of mean maximum summer and mean minimum winter temperatures over Greece in 2070?2100 using statistical downscaling methods. Euro Asian J Sustain Energy Dev Policy, 2, 33-44.
  23. Tolika, K., Maheras, P., Vafiadis, M., Flocas, H. A. and Arseni?Papadimitriou, A. (2007). Simulation of seasonal precipitation and raindays over Greece: A statistical downscaling technique based on artificial neural networks (ANNs). International Journal of Climatology, 27, 861-881. https://doi.org/10.1002/joc.1442
  24. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences, Academic Press, New York.
  25. Wood, S. N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society B, 73, 3-36. https://doi.org/10.1111/j.1467-9868.2010.00749.x
  26. Yoon, S., Kim, M. K. and Park, J. S. (2015). Comparison of statistical linear interpolation models for monthly precipitation in South Korea. Stochastic Environmental Research and Risk Assessment, 29, 1371-1382. https://doi.org/10.1007/s00477-015-1031-7
  27. Yoon, S. and Kim, M. G.(2016). Spatio-temporal models for generating a map of high resolution NO2 level. Journal of the Korean Data & Information Science Society, 27, 803-814. https://doi.org/10.7465/jkdi.2016.27.3.803

Cited by

  1. Production of Agrometeorological Information in Onion Fields using Geostatistical Models vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.509
  2. 산림재적 추정을 위한 계층적 베이지안 분석 vol.28, pp.1, 2016, https://doi.org/10.7465/jkdi.2017.28.1.29
  3. 앙상블 기법을 이용한 가뭄지수 예측 vol.28, pp.5, 2016, https://doi.org/10.7465/jkdi.2017.28.5.1125
  4. 통계적 모형을 통한 법주사와 선암사 목조건축물의 기상인자에 대한 상관성 분석 vol.34, pp.5, 2018, https://doi.org/10.12654/jcs.2018.34.5.07
  5. 강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교 vol.62, pp.1, 2016, https://doi.org/10.5389/ksae.2020.62.1.061