DOI QR코드

DOI QR Code

효소 분해순서를 달리하여 제조한 탈지대두박효소 분해물의 이화학적 및 관능적 특성

Physicochemical and Sensory Characteristics of Hydrolyzed Vegetable Protein Manufactured by Various Enzyme Reaction Order of Defatted Soybean Meal

  • 신명곤 (우송대학교 외식조리영양학부) ;
  • 이규희 (우송대학교 조리과학연구센타)
  • Shin, Myung-Gon (Department of Food Science & Biotechnology, Woosong University) ;
  • Lee, Gyu-Hee (Culinary Science Research Center, Woosong University)
  • 투고 : 2016.04.21
  • 심사 : 2016.08.10
  • 발행 : 2016.09.30

초록

식물성 단백질 급원인 탈지대두박에 Flavourzyme$^{(R)}$(F), Neutrase$^{(R)}$(N), Alcalase$^{(R)}$(A), Protamex$^{(R)}$(P)의 단백질 분해효소를 작용시켰을 때 짠맛을 많이 생성하는 조건을 확인하고자 하였다. 효소처리 순서를 달리하여 제조한 enzyme hydrolyzed vegetable protein의 고형분 함량은 1차 Neutrase $^{(R)}$(N), 2차 Alcalase$^{(R)}$(A), 3차 Flavourzyme$^{(R)}$(F), 4차 Protamex$^{(R)}$(P)를 처리한 NAFP 처리구에서 5.60%로 가장 높은 값을 나타내었으나 고형분 함량에서는 효소의 처리 순서가 큰 영향을 미치지 않는 것을 알 수 있었다. 아미노태질소 함량은 24개의 처리구들 중에서 ANFP(102.76 mg%)와 APNF(102.85 mg%) 처리구가 통계적으로 높은 값을 나타내었다. 정량묘사분석 결과 짠맛은 PNFA(11.81) 처리구가 통계적으로 유의차를 나타내며 높은 값을 나타내었고, NPAF(10.14), FPNA(10.00), APNF(9.80), NAFP(9.76), AFNP(9.57), APFN(9.52), NPFA(9.50) 처리구가 처리구간에 통계적으로 유의차를 나타내지 않으며 다음으로 높은 값을 나타내었다. 감칠맛은 모든 처리구에서 통계적으로 유의차를 나타내지 않았다. 쓴맛 후미는 AFPN(5.67) 처리구가 가장 높은 값을 나타내었으며 FAPN(2.38), PNAF(2.62), NAPF(2.48) 처리구에서 낮은 값을 나타내었다. 관능평가 묘사분석 결과를 주성분 분석한 결과 PNFA, NAFP, APFN, NPAF, FPNA, NPFA, APNF 처리구는 짜고 감칠맛 나는 맛을 낼 수 있는 효소처리법이었다. 따라서 이들 효소의 처리 순서가 짜고 감칠맛 나는 식물단백효소 분해물의 제조에 바람직한 방법임을 알 수 있었다.

To obtain enzyme hydrolyzed vegetable protein (EHVP) with a salty and umami taste, defatted soybean meal was treated with proteases such as Flavourzyme$^{(R)}$ (F), Neutrase$^{(R)}$ (N), Alcalase$^{(R)}$ (A), and Protamex$^{(R)}$ (P) in various reaction orders. The highest soluble solid content of EHVP was 5.60% in enzyme reaction order NAFP although there was no significant difference. Amino type nitrogen was highest in ANFP (102.76 mg%) and APNF (102.85 mg%). In the sensory descriptive analysis, salty taste was highest in PNFA (11.81), followed by NPAF (10.14), FPNA (10.00), APNF (9.80), NAFP (9.76), AFNP (9.57), APFN (9.52), and NPFA (9.50) with no significant difference among treatment. Umami taste was not significantly different among the various enzyme treatments. Bitter aftertaste was highest in AFPN (5.67) and lowest in FAPN (2.38), PNAF (2.62), and NAPF (2.48). In the principle component analysis, EHVPs of PNFA, NAFP, APFN, NPAF, FPNA, NPFA, and APNF showed a strong salty and umami taste. Therefore, the PNFA, NAFP, APFN, NPAF, FPNA, NPFA, and APNF are desirable methods for making EHVP with a salty and umami taste.

키워드

참고문헌

  1. Nagodawithana T. 1992. Yeast-derived flavors and flavor enhancers and their probable mode of action. Food Technol 46: 138-144.
  2. Chen J, Wang Z. 2006. Determination of 3-monochloropropane-1,2-diol in hydrolyzed vegetable proteins and soy by solid phase extraction and gas chromatography/negative chemical ionization-mass spectrometry. Chin J Chromatogr 24: 447-450.
  3. Chae HJ, In MJ, Kim MH. 1997. Optimization of enzymatic treatment for the production of hydrolyzed vegetable protein. Korean J Food Sci Technol 29: 1125-1130.
  4. Sano A, Satoh T, Oguma T, Nakatoh A, Satoh J, Ohgawara T. 2007. Determination of levulinic acid in soy sauce by liquid chromatography with mass spectrometric detection. Food Chem 105: 1242-1247. https://doi.org/10.1016/j.foodchem.2007.03.004
  5. Lee CH, Kim CS, Lee SP. 1984. Studies on the enzymatic partial hydrolysis of soybean protein isolates. Korean J Food Sci Technol 16: 228-234.
  6. Yoon SH, Lee JK, Nam HS, Lee HJ. 1994. Formation of meatlike flavors by Maillard reaction using hydrolyzed vegetable protein (HVP). Korean J Food Sci Technol 26: 781-786.
  7. Wu YF, Beak HH, Gerard PD, Cadwallader KR. 2000. Development of meat-like process flavoring from soybean-based enzyme-hydrolyzed vegetable protein (E-HVP). J Food Sci 65: 1220-1227. https://doi.org/10.1111/j.1365-2621.2000.tb10269.x
  8. http://www.novozymes.com/en/solutions/food-and-beverages/meat-processing (accessed Apr 2016).
  9. Park MK. 2011. Effect of enzymatic hydrolysis by proteases on antioxidant activity of Chungkukjang. J Korean Soc Food Sci Nutr 40: 327-333. https://doi.org/10.3746/jkfn.2011.40.2.327
  10. Chae SK, Kang GS, Ma SJ, Bang KY, Oh MH, Oh SH. 2000. Standard food analytics. Jigu Publishing Co., Seoul, Korea. p 460-463.
  11. Stone H, Sidel JL. 1993. Sensory evaluation. 2nd ed. Academic Press, San Diego, CA, USA. p 202-242.
  12. Nakata T, Takahashi M, Nakatani M, Kuramitsu R, Tamura M, Okai H. 1995. Role of basic and acidic fragments in delicious peptides (Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) and the taste behavior of sodium and potassium salts in acidic oligopeptides. Biosci Biotechnol Biochem 59: 689-693. https://doi.org/10.1271/bbb.59.689
  13. Rhyu MR, Kim EY. 2011. Umami taste characteristics of water extract of Doenjang, a Korean soybean paste: Lowmolecular acidic peptides may be a possible clue to the taste. Food Chem 127: 1210-1215. https://doi.org/10.1016/j.foodchem.2011.01.128
  14. Lioe HN, Takara K, Yasuda M. 2006. Evaluation of peptide contribution to the intense umami taste of Japanese soy sauces. J Food Sci 71: S277-S283. https://doi.org/10.1111/j.1365-2621.2006.tb15654.x
  15. Ishibashi N, Ono I, Kato K, Shigenaga T, Shinoda I, Okai H, Fukui S. 1988. Role of the hydrophobic amino-acid residue in the bitterness of peptides. Agric Biol Chem 52: 91-94.
  16. Ishibashi N, Kouge K, Shinoda I, Kanehisa H, Okai H. 1988. A mechanism for bitter taste sensibility in peptides. Agric Biol Chem 52: 819-827.
  17. Shinoda I, Fushimi A, Kato H, Okai H, Fukui S. 1985. Bitter taste of synthetic C-terminal tetradecapeptide of bovine beta-casein, H-PRO196-Val-Leu-Gly-Pro-Val-Arg-Gly-Pro-Phe-Pro-Ile-Ile-Val209-OH, and its related peptides. Agric Biol Chem 49: 2587-2596.
  18. Komai T, Kawabata C, Tojo H, Gocho S, Ichishima E. 2007. Purification of serine carboxypeptidase from the hepatopancreas of Japanese common squid Todarodes pacificus and its application for elimination of bitterness from bitter peptides. Fisheries Sci 73: 404-411. https://doi.org/10.1111/j.1444-2906.2007.01348.x
  19. Cheison SC, Wang Z, Xu SY. 2007. Preparation of whey protein hydrolysates using a single- and two-stage enzymatic membrane reactor and their immunological and antioxidant properties: characterization by multivariate data analysis. J Agric Food Chem 55: 3896-3904. https://doi.org/10.1021/jf062936i
  20. Ogawa T, Hoshina K, Haginaka J, Honda C, Tanimoto T, Uchida T. 2005. Screening of bitterness-suppressing agents for quinine: the use of molecularly imprinted polymers. J Pharm Sci 94: 353-362. https://doi.org/10.1002/jps.20248
  21. Kim MJ, Son HJ, Kim Y, Misaka T, Rhyu MR. 2015. Umamibitter interactions: the suppression of bitterness by umami peptides via human bitter taste receptor. Biochem Biophys Res Commun 456: 586-590. https://doi.org/10.1016/j.bbrc.2014.11.114