DOI QR코드

DOI QR Code

쌀을 첨가하여 제조한 식빵의 품질 특성에 미치는 Hydrocolloids의 영향

Effects of Hydrocolloids on Quality Characteristics of Bread with Rice Flour

  • 김양훈 (건국대학교 농축대학원 바이오식품공학과) ;
  • 이정훈 (건국대학교 생명자원 식품공학과) ;
  • 이시경 (건국대학교 생명자원 식품공학과)
  • Kim, Yang-Hoon (Department of BioFood Sci. & Technol., Agri. Livestock Graduate School, Konkuk University) ;
  • Lee, Jeong-Hoon (Department of Bioresources and Food Science, Konkuk University) ;
  • Lee, Si-Kyung (Department of Bioresources and Food Science, Konkuk University)
  • 투고 : 2016.05.20
  • 심사 : 2016.07.16
  • 발행 : 2016.09.30

초록

강력분 80%와 쌀가루 20%에 baker's%로 검류로 HPMC, xanthan gum, guar gum, glucomannan 등을 각각 1% 첨가한 혼합분으로 만든 식빵의 품질 특성을 평가하기 위하여 빵의 부피 및 비용적, 굽기 및 냉각 손실률, 수분 함량, 수분활성도, crumb 조직감, crumb 색도, 관능검사 등을 분석하였다. 식빵의 부피는 HPMC와 glucomannan 첨가구가 유의적 차이 없이 가장 컸고 xanthan gum 첨가구가 가장 작았으며, 비용적은 부피의 결과와 반대였다. 냉각 손실률은 guar gum 첨가구가 9.25%로 가장 높았고, glucomannan 첨가구가 7.78%로 가장 낮았다. 수분 함량은 저장기간 동안 glucomannan 첨가구가 가장 많았고 대조구가 가장 적었다. Crumb 조직감 특성에서 경도는 glucomannan 첨가구가 낮고 탄력성은 높아 부드러웠으며, xanthan gum 첨가구는 경도 값이 높아 부드럽지 못하였다. 응집성, 씹힘성, 검성은 glucomannan과 HPMC 첨가구가 가장 낮았고 xanthan gum 첨가구가 가장 높았다. Crumb 색도 측정에서 L 값은 HPMC 첨가구가 높았고 xanthan gum 첨가구가 가장 낮았다. a 값은 모두 유사하였으나, b 값은 HPMC 첨가구가 가장 낮아 밝았고 xanthan gum 첨가구는 가장 높아 어두웠다. 관능검사의 종합점수에서 HPMC와 glucomannan 첨가구가 유의적 차이 없이 높은 점수를, xanthan gum 첨가구가 낮은 점수를 얻었다. 이상의 실험으로 강력분과 쌀가루 8:2의 혼합분에 hydrocolloids를 첨가하여 식빵 제조 시 HPMC와 glucomannan의 첨가가 부피, 부드러움, 맛과 향, 노화 지연 등에 효과적인 것으로 나타났다.

The effects of different hydrocolloids, including hydroxypropyl methylcellulose (HPMC), xanthan gum (XG), guar gum (GG), and glucomannan (GM), on bread quality characteristics were investigated. The composite flour used for bread production consisted of 80% bread flour and 20% rice flour with 1% different hydrocolloids based on baker's%. Loaf volume, specific loaf volume, baking and cooling loss rate, moisture content, crumb texture and color, and sensory evaluation were determined. Breads containing HPMC and GM showed the highest loaf volumes, but the difference was not significant. Bread containing GM showed the lowest baking and cooling loss rate (7.03 and 7.78%, respectively), and the highest moisture content. Breads containing HPMC and GM showed increased springiness and decreased hardness based on texture profile analysis. Cohesiveness, chewiness, and gumminess of breads containing GM and HPMC showed their lowest values, whereas breads containing XG revealed their highest values. Bread with HPMC showed lightest coloured crumbs. In the sensory evaluation, bread containing GM and HPMC presented their highest scores, whereas bread containing XG showed the lowest scores. Overall, HPMC and GM significantly and positively affected quality characteristics of bread.

키워드

참고문헌

  1. Callejo MJ, Gil MJ, Rodriguez G, Ruiz MV. 1999. Effect of gluten addition and storage time on white pan bread quality: instrumental evaluation. Z Lebensm Unters Forsch A 208: 27-32. https://doi.org/10.1007/s002170050370
  2. Nakamura S, Suzuki K, Ohtsubo K. 2009. Characteristics of bread prepared from wheat flours blended with various kinds of newly developed rice flours. J Food Sci 74: E121-E130. https://doi.org/10.1111/j.1750-3841.2009.01088.x
  3. Gallagher E, Gormley TR, Arendt EK. 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15: 143-152. https://doi.org/10.1016/j.tifs.2003.09.012
  4. Rosell CM, Collar C, Haros M. 2007. Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids 21: 452-462. https://doi.org/10.1016/j.foodhyd.2006.05.004
  5. Kruger A, Ferrero C, Zaritzky NE. 2003. Modelling corn starch swelling in batch systems: effect of sucrose and hydrocolloids. J Food Eng 58: 125-133. https://doi.org/10.1016/S0260-8774(02)00337-0
  6. Sarkar N, Walker LC. 1995. Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27: 177-185. https://doi.org/10.1016/0144-8617(95)00061-B
  7. Rosell CM, Rojas JA, de Barber CB. 2001. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids 15: 75-81. https://doi.org/10.1016/S0268-005X(00)00054-0
  8. Barcenas ME, Rosell CM. 2006. Different approaches for improving the quality and extending the shelf life of the partially baked bread: low temperatures and HPMC addition. J Food Eng 72: 92-99. https://doi.org/10.1016/j.jfoodeng.2004.11.027
  9. Flammang AM, Kendall DM, Baumgartner CJ, Slagle TD, Choe YS. 2006. Effect of a viscous fiber bar on postprandial glycemia in subjects with type 2 diabetes. J Am Coll Nutr 25: 409-414. https://doi.org/10.1080/07315724.2006.10719553
  10. Ribotta PD, Perez GT, Leon AE, Anon MC. 2004. Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocolloids 18: 305-313. https://doi.org/10.1016/S0268-005X(03)00086-9
  11. Chua M, Baldwin TC, Hocking TJ, Chan K. 2010. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br.. J Ethnopharmacol 128: 268-278. https://doi.org/10.1016/j.jep.2010.01.021
  12. Zhang YQ, Xie BJ, Gan X. 2005. Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym 60: 27-31. https://doi.org/10.1016/j.carbpol.2004.11.003
  13. Fang W, Wu P. 2004. Variations of Konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocolloids 18: 167-170. https://doi.org/10.1016/S0268-005X(03)00044-4
  14. Kim YH, Lee JH, Chung KC, Lee SK. 2015. Effect of hydrocolloids on physicochemical properties of bread flour dough with rice flour. J Korean Soc Food Sci Nutr 44: 1819-1825. https://doi.org/10.3746/jkfn.2015.44.12.1819
  15. American Association of Cereal Chemists. 1985. Approved methods of AACC. St. Paul, MN, USA. Methods 10-10b, 10-05.01.
  16. Hallen E, Ibanoglu S, Ainsworth P. 2004. Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour. J Food Eng 63: 177-184. https://doi.org/10.1016/S0260-8774(03)00298-X
  17. KFDA. 2002. Korean Food Code. Korean Food & Drug Administration, Seoul, Korea. p 3-4.
  18. Ronald HZ. 1993. Bread lecture book. American Institute of Baking, Manhattan, KS, USA. p 1311.
  19. Shittu TA, Aminu RA, Abulude EO. 2009. Functional effects of xanthan gum on composite cassava-wheat dough and bread. Food Hydrocolloids 23: 2254-2260. https://doi.org/10.1016/j.foodhyd.2009.05.016
  20. Barcenas ME, Rosell CM. 2005. Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocolloids 19: 1037-1043. https://doi.org/10.1016/j.foodhyd.2005.01.005
  21. Ozkoc SO, Sumnu G, Sahin S. 2009. The effects of gums on macro and micro-structure of breads baked in different ovens. Food Hydrocolloids 23: 2182-2189. https://doi.org/10.1016/j.foodhyd.2009.04.003
  22. Hager AS, Arendt EK. 2013. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids 32: 195-203. https://doi.org/10.1016/j.foodhyd.2012.12.021
  23. Sumnu G, Koksel F, Sahin S, Basman A, Meda V. 2010. The effects of xanthan and guar gums on staling of gluten-free rice cakes baked in different ovens. Int J Food Sci Technol 45: 87-93.
  24. Kotoki D, Deka SC. 2010. Baking loss of bread with special emphasis on increasing water holding capacity. J Food Sci Technol 47: 128-131. https://doi.org/10.1007/s13197-010-0008-2
  25. Guarda A, Rosell CM, Benedito C, Galotto MJ. 2004. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids 18: 241-247. https://doi.org/10.1016/S0268-005X(03)00080-8
  26. Rosell CM, Foegeding A. 2007. Interaction of hydroxypropylmethylcellulose with gluten proteins: Small deformation properties during thermal treatment. Food Hydrocolloids 21: 1092-1100. https://doi.org/10.1016/j.foodhyd.2006.08.003
  27. Czuchajowska Z, Pomeranz Y, Jeffers HC. 1989. Water activity and moisture content of dough and bread. Cereal Chem 66: 128-132.
  28. Gil MJ, Callejo MJ, Rodriguez G. 1997. Effect of water content and storage time on white pan bread quality: instrumental evaluation. Z Lebensm Unters Forsch A 205: 268-273. https://doi.org/10.1007/s002170050163
  29. Xie F, Dowell FE, Sun XS. 2003. Comparison of near-infrared reflectance spectroscopy and texture analyzer for measuring wheat bread changes in storage. Cereal Chem 80: 25-29. https://doi.org/10.1094/CCHEM.2003.80.1.25
  30. Barcenas ME, Benedito C, Rosell CM. 2004. Use of hydrocolloids as bread improvers in interrupted baking process with frozen storage. Food Hydrocolloids 18: 769-774. https://doi.org/10.1016/j.foodhyd.2003.12.003
  31. Sim SY, Noor Aziah AA, Cheng LH. 2011. Characteristics of wheat dough and Chinese steamed bread added with sodium alginates or konjac glucomannan. Food Hydrocolloids 25: 951-957. https://doi.org/10.1016/j.foodhyd.2010.09.009
  32. Davidou S, Le Meste M, Debever E, Bekaert D. 1996. A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocolloids 10: 375-383. https://doi.org/10.1016/S0268-005X(96)80016-6
  33. Gallagher E, Gormley TR, Arendt, EK. 2003. Crust and crumb characteristics of gluten free breads. J Food Eng 56: 153-161. https://doi.org/10.1016/S0260-8774(02)00244-3
  34. Hong HH, Min KC. 1997. Test of bread and cake. Kwangmoonkag Co., Paju, Korea. p 108.
  35. Primo-Martin C, van de Pijpekamp A, van Vlietc T, de Jongh HHJ, Plijter JJ, Hamer RJ. 2006. The role of the gluten network in the crispness of bread crust. J Cereal Sci 43: 342-352. https://doi.org/10.1016/j.jcs.2005.12.007
  36. Zhou Y, Cao H, Hou M, Nirasawa S, Tatsumi E, Foster TJ, Cheng Y. 2013. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Res Int 51: 879-885. https://doi.org/10.1016/j.foodres.2013.02.002
  37. Ognean M, Ognean CF, Darie N. 2007. Sensorial and nutritional influences of several types of hydrocolloids in bread. Acta Univ Cibiniensis, Ser E: Food Technol XI: 55-61.