DOI QR코드

DOI QR Code

가식성 코팅처리가 토종다래(Actinidia arguta) 동결건조 스낵의 흡습과 품질에 미치는 영향

Effect of Edible Coating on Hygroscopicity and Quality Characteristics of Freeze-Dried Korean Traditional Actinidia (Actinidia arguta) Cultivars Snack

  • 김아나 (경상대학교 응용생명과학부 응용생명과학전공) ;
  • 소슬아 (경상대학교 응용생명과학부 응용생명과학전공) ;
  • 박찬양 (경상대학교 응용생명과학부 응용생명과학전공) ;
  • 이교연 (경상대학교 응용생명과학부 응용생명과학전공) ;
  • 샤피어라만 (경상대학교 응용생명과학부 응용생명과학전공) ;
  • 최성길 (경상대학교 식품공학과)
  • Kim, Ah-Na (Division of Applied Life Science, Gyeongsang National University) ;
  • So, Seul-Ah (Division of Applied Life Science, Gyeongsang National University) ;
  • Park, Chan-Yang (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Kyo-Yeon (Division of Applied Life Science, Gyeongsang National University) ;
  • Rahman, M. Shafiur (Division of Applied Life Science, Gyeongsang National University) ;
  • Choi, Sung-Gil (Division of Food Science and Technology (Institute of Agriculture and Life Sciences), Gyeongsang National University)
  • 투고 : 2016.06.01
  • 심사 : 2016.07.28
  • 발행 : 2016.09.30

초록

본 연구는 수분 흡습으로 인해 건조 후 저장이 어려운 다래 동결건조 스낵의 저장성 및 상품성을 증가시키기 위해 다양한 가식성 코팅제를 처리한 스낵의 품질 특성과 흡습 저해효과를 분석하였다. 따라서 가식성 코팅처리제로는 albumin, dextrin, whole soy flour를 이용하였고, 5%의 농도로 코팅제를 증류수에 용해한 코팅액에 슬라이스를 침지하여 제조하였다. 스낵의 주요 품질 특성인 수분 함량, 수분활성도, 수율, 수분용해지수 및 수분흡착지수, 수화 복원성을 분석한 결과 모든 시료에서 가식성 코팅처리에 따른 유의적인 차이가 나타나지 않아 코팅처리는 다래 동결건조 스낵의 기본적인 품질 특성에 영향을 미치지 않는 것으로 나타났다. 가식성 코팅처리는 다래 동결건조 스낵의 흡습을 저해하는 것으로 나타났으며 dextrin으로 처리한 시료의 흡습 저해 효과가 가장 우수한 것으로 나타났다. 흡습 저해가 스낵의 이화학적 특성에 미치는 영향을 알아보기 위해 흡습 시간에 따른 경도와 총페놀 함량 및 항산화 활성을 측정하였다. 흡습 시간이 길어질수록 모든 시료의 경도가 감소하였고 코팅처리는 흡습으로 인한 경도의 감소를 저해하는 것을 확인하였으며, dextrin 처리가 가장 높은 경도를 가지는 것으로 나타났다. 또한, 스낵의 총페놀 함량 및 항산화 활성은 흡습시간이 경과함에 따라 감소하는 것으로 나타났으며, 가식성 코팅처리군의 총페놀 함량과 항산화 활성은 비처리군보다 비교적 높게 유지하였고, dextrin으로 코팅한 스낵이 가장 높은 총페놀 함량과 항산화 활성을 가지는 것으로 나타났다. 이상의 결과를 바탕으로 토종다래 동결건조 스낵의 흡습을 방지하고 품질을 보존하는 방법으로 가식성 코팅제인 dextrin으로 코팅하는 것이 가장 효과적일 것으로 생각되며, 가식성 코팅은 여러 가공식품의 상품성 및 저장성을 향상시킬 것으로 생각한다.

The purpose of this study was to evaluate the effect of edible coating on hygroscopicity and quality characteristics of a freeze-dried Actinidia arguta snack. Freeze-dried A. arguta snacks were coated with various edible coating materials such as albumin, dextrin, and whole soy flour. There were no significant effects of coating on major quality properties such as moisture content, water activity, yield, water soluble index, water absorption index, and rehydration properties of all samples. Compared with non-coated samples, edible coated samples effectively inhibited hygroscopicity as a function of hygroscopic time. The samples coated with dextrin showed lower hygroscopicity than the other coated samples. In addition, the effects of edible coating treatment on hardness, total phenolic content, and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity were investigated. Edible coated samples had higher hardness, total phenolic content, and antioxidant activity than the non-coated samples as a function of hygroscopic time. Among edible coating materials, dextrin was the most effective coating material. Dextrin as an edible coating material for freeze-dried A. arguta snack may help to prevent hygroscopicity and extend market quality and shelf-life during storage.

키워드

참고문헌

  1. Park Y, Jang YS, Lee MH, Kwon OW. 2007. Comparison of antioxidant capacity and nutritional composition of three cultivars of Actinidia arguta. J Korean For Soc 96: 580-584.
  2. Hassal AK, Pringle GJ, Macrae EA. 1998. Development, maturation, and postharvest responses of Actinidia arguta (Sieb. et Zucc.) Planch, ex Miq. fruit. N Z J Crop Hortic Sci 26: 95-108. https://doi.org/10.1080/01140671.1998.9514046
  3. Williams MH, Boyd LM, McNeilage MA, MacRae EA, Ferguson AR, Beatson RA, Martin PJ. 2003. Development and commercialization of 'baby kiwi' (Actinidia arguta Planch.). Acta Hort 610: 81-86.
  4. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76: 69-75. https://doi.org/10.1016/S0308-8146(01)00251-5
  5. Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T. 2004. Varietal difference in vitamin C content in the fruit of kiwifruit and other actinidia species. J Agric Food Chem 52: 5472-5475. https://doi.org/10.1021/jf049398z
  6. Rassam M, Laing W. 2005. Variation in ascorbic acid and oxalate levels in the fruit of Actinidia chinensis tissues and genotypes. J Agric Food Chem 53: 2322-2326. https://doi.org/10.1021/jf048197s
  7. Fisk CL, McDaniel MR, Strik BC, Zhao Y. 2006. Physicochemical, sensory, and nutritive qualities of hardy kiwifruit (Actinidia arguta 'Ananasnaya') as affected by harvest maturity and storage. J Food Sci 71: S204-S210. https://doi.org/10.1111/j.1365-2621.2006.tb15642.x
  8. Latocha P. 2007. The comparison of some biological features of Actinidia arguta cultivars fruit. Ann Warsaw Univ Life Sci-SGGW Horticult Landsc Architect 28: 105-109.
  9. Latocha P, Krupa T. 2008. The mineral composition of new genotypes of hardy kiwifruit (Actinidia Lindl.) bred at SGGW. Ann Warsaw Univ Life Sci-SGGW Horticult Landsc Architect 29: 105-110.
  10. Latocha P, Krupa T, Wolosiak R, Worobiej E, Wilczak J. 2010. Antioxidant activity and chemical difference in fruit of different Actinidia sp.. Int J Food Sci Nutr 61: 381-394. https://doi.org/10.3109/09637480903517788
  11. Nishiyama I, Fukuda T, Oota T. 2005. Genotypic differences in chlorophyll, lutein, and ${\beta}$-carotene contents in the fruits of Actinidia species. J Agric Food Chem 53: 6403-6407. https://doi.org/10.1021/jf050785y
  12. Jin DE, Park SK, Park CH, Seung TW, Heo HJ. 2014. Nutritional compositions of three traditional Actinidia (Actinidia arguta) cultivars improved in Korea. J Korean Soc Food Sci Nutr 43: 1942-1947. https://doi.org/10.3746/jkfn.2014.43.12.1942
  13. Krupa T, Latocha P, Liwinska A. 2011. Changes of physicochemical quality, phenolics and vitamin C content in hardy kiwifruit (Actinidia arguta and its hybrid) during storage. Sci Hortic 130: 410-417. https://doi.org/10.1016/j.scienta.2011.06.044
  14. Lee SE, Kim DM, Kim KH, Rhee C. 1989. Several physico-chemical characteristics of kiwifruit (Actinidia chinensis Planch.) depended on cultivars and ripening stages. Korean J Food Sci Technol 21: 863-868.
  15. Chien PJ, Sheu F, Yang FH. 2007. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78: 225-229. https://doi.org/10.1016/j.jfoodeng.2005.09.022
  16. Elsabee MZ, Abdou ES. 2013. Chitosan based edible films and coatings: A review. Mater Sci Eng: C 33: 1819-1841. https://doi.org/10.1016/j.msec.2013.01.010
  17. Ayranci E, Tunc S. 2003. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem 80: 423-431. https://doi.org/10.1016/S0308-8146(02)00485-5
  18. Krochta JM, Baldwin EA, Nisperos-Carriedo MO. 1994. Edible coatings and films to improve food quality. Technomic Publishing Co., Inc., Lancaster, PA, USA. p 305-335.
  19. Gennadios A, McHugh TH, Weller CL, Krochta JM. 1994. Edible coatings and films based on proteins. Technomic Publishing Co., Inc., Lancaster, PA, USA. p 395-409.
  20. Hernandez E. 1994. Edible coatings from lipids and resins. In Edible Coatings and Films to Improve Food Quality. Krochta JM, Baldwin EA, Nisperos-Carriedo MO, eds. Technomic Publishing Co., Inc., Lancaster, PA, USA. p 279-303.
  21. AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA.
  22. AACC. 1983. Approved method of the AACC. 10th ed. American Association of Cereal Chemists, St. Paul, MN, USA. p 56-20.
  23. Koh S, Rhim JW, Kim JM. 2011. Effect of freezing temperature on the rehydration properties of freeze-dried rice porridge. Korean J Food Sci Technol 43: 509-512. https://doi.org/10.9721/KJFST.2011.43.4.509
  24. Chung HS, Hong JH, Youn KS. 2005. Quality characteristics of granules prepared by protein-bound polysaccharide isolated from Agaricus blazei and selected forming agents. Korean J Food Preserv 12: 247-251.
  25. Kim DO, Jeong SW, Lee CY. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81: 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  26. Choi JS, Lee JH, Park HJ, Kim HG, Young HS, Mun SI. 1993. Screening for antioxidant activity of plants and marine algae and its active principle from Prunus davidiana. Kor J Pharmacogn 24: 299-303.
  27. Rahimi J, Singh A, Adewale PO, Adedeji AA, Ngadi MO, Raghavan V. 2013. Effect of carboxylmethyl cellulose coating and osmotic dehydration on freeze drying kinetics of apple slices. Foods 2: 170-182. https://doi.org/10.3390/foods2020170
  28. Lee SH, Kim CK. 1994. Optimization for extrusion cooking conditions of rice extrudate by response surface methodology. Korean J Food Nutr 7: 137-143.
  29. Oh HJ, Lim JH, Lee JY, Oh YJ, Lim SB. 2014. Effects of anticaking agents on the physicochemical properties of freeze-dried kiwifruit powders. Korean J Culinary Res 20: 178-188.
  30. Lee MJ, Seog EJ, Lee JH. 2007. Physicochemical properties of chaga (Inonotus obliquus) mushroom powder as influenced by drying methods. J Food Sci Nutr 12: 40-45.
  31. Ahmed M, Akter MS, Eun JB. 2010. Impact of alpha-amylase and maltodextrin on physicochemical, functional and antioxidant capacity of spray-dried purple sweet potato flour. J Sci Food Agric 90: 494-502.
  32. Ergun K, Caliskan G, Dirim SN. 2016. Determination of the drying and rehydration kinetics of freeze dried kiwi (Actinidia deliciosa) slices. Heat Mass Transfer doi: 10.1007/s00231-016-1773-x.
  33. Noshad M, Mohebbi M, Shahidi F, Mortazavi SA. 2012. Kinetic modeling of rehydration in air-dried quinces pretreated with osmotic dehydration and ultrasonic. J Food Process Preserv 36: 383-392. https://doi.org/10.1111/j.1745-4549.2011.00593.x
  34. Kim MK, Kim MH, Yu MS, Song YB, Seo YJ, Song KB. 2009. Dehydration of carrot slice using polyethylene glycol and maltodextrin and comparison with other drying methods. J Korean Soc Food Sci Nutr 38: 111-115. https://doi.org/10.3746/jkfn.2009.38.1.111
  35. Mazza G. 1983. Dehydration of carrots: Effect of pre-drying treatments on moisture transport and product quality. Can Inst Food Sci Technol J 18: 113-123.
  36. Karathanos V. 1993. Collapse of structure during drying of celery. Drying Technol 11: 1005-1023. https://doi.org/10.1080/07373939308916880
  37. Rhee C, Cho SY. 1991. Effect of dextrin on sorption characteristics and quality of vacuum frying dried carrot. Korean J Food Sci Technol 23: 241-224.
  38. Heidenreich S, Jaros D, Rohm R, Ziems A. 2004. Relationship between water activity and crispness of extruded rice crisps. J Texture Stud 35: 621-633. https://doi.org/10.1111/j.1745-4603.2004.35513.x
  39. Mazumder P, Roopa BS, Bhattacharya S. 2007. Textural attributes of a model snack food at different moisture contents. J Food Eng 79: 511-516. https://doi.org/10.1016/j.jfoodeng.2006.02.011
  40. Baloch AK, Buckle KA, Edwards RA. 1986. Effect of coating with starch and nordihydroguaiaretic acid on the stability of carotenoids of dehydrated carrot. J Chem Soc Pak 8: 59-62.
  41. Zhao YP, Chang KC. 1995. Sulfite and starch affect color and carotenoids of dehydrated carrots (Daucus carota) during storage. J Food Sci 60: 324-346. https://doi.org/10.1111/j.1365-2621.1995.tb05665.x
  42. Bravin B, Peressini D, Sensidoni A. 2006. Development and application of polysaccharide-lipid edible coating to extend shelf-life of dry bakery products. J Food Eng 76: 280-290. https://doi.org/10.1016/j.jfoodeng.2005.05.021

피인용 문헌

  1. Quality characteristics of hot-air dried ‘Darae’ (Actinidia arguta) with different sugar osmotic dehydration pretreatment vol.28, pp.3, 2016, https://doi.org/10.11002/kjfp.2021.28.3.325