DOI QR코드

DOI QR Code

Far Infrared Drying Characteristics of Seasoned Red Pepper Sauce Dried by Heated Air

1차 열풍건조 한 고추 다진 양념의 원적외선 건조특성

  • Cho, Byeong Hyo (Department of Biosystems Engineering, Chungbuk National University) ;
  • Lee, Jung Hyun (Laboratory of Agricultural and Food Process Engineering, Hokkaido University) ;
  • Kang, Tae Hwan (Major in Bio-Industry Mechanical Engineering, Kongju National University) ;
  • Lee, Hee Sook (Department of Consumer Studies, Chungbuk National University) ;
  • Han, Chung Su (Department of Biosystems Engineering, Chungbuk National University)
  • 조병효 (충북대학교 바이오시스템공학과) ;
  • 이정현 (홋카이도대학교 농학부) ;
  • 강태환 (공주대학교 생물생산기계공학전공) ;
  • 이희숙 (충북대학교 소비자학과) ;
  • 한충수 (충북대학교 바이오시스템공학과)
  • Received : 2016.07.29
  • Accepted : 2016.09.01
  • Published : 2016.09.30

Abstract

The purpose of this study was to verify the drying characteristics of seasoned red pepper sauce and establish optimal drying conditions for far infrared drying of seasoned red pepper sauce. Seasoned red pepper sauce, which was dried by heated air, was used. One kg of seasoned red pepper was spread at thicknesses of 10 and 20 mm and dried by a far infrared dryer until a final moisture content of $15{\pm}0.5%$. The far infrared dryer conditions were air velocity of 0.6, 0.8 m/s and drying temperatures of 60, 70, and $80^{\circ}C$. The drying models were estimated using a determination coefficient and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, color changes, content of capsaicinoids, and energy consumption. The results can be summarized as follows. The drying rate (that is, drying time) tended to be reduced as temperature and air velocity for drying increased. The Page and Henderson models were suitable for drying of seasoned red pepper sauce by a far infrared dryer. Redness decreased after far infrared drying under all experimental conditions. The color difference was 18.18 under the following conditions: thickness 20 mm, temperature $70^{\circ}C$, and air velocity 0.8 m/s. This value was slightly higher than those under other far infrared drying conditions. The capsaicinoid properties of seasoned red pepper sauce decreased under all far infrared drying conditions. The highest capsaicin (19.91 mg/100 g) and dihydrocapsaicin (12.87 mg/100 g) contents were observed at a thickness of 10 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. Energy consumption decreased with higher temperature, slower air velocity, and thinner seasoned red pepper sauce.

본 연구에서는 원적외선을 이용하여 1차 열풍건조 한 고추 다진 양념을 건조할 경우 두께, 건조온도와 송풍속도에 따른 건조특성과 건조제품의 색도 변화, 건조 전후 고추 다진 양념의 capsaicinoid 등 품질특성을 분석하여 원적외선 건조 기초 자료를 제시하고자 하였다. 고추 다진 양념의 건조속도는 원적외선 건조온도와 송풍속도가 증가할수록 빨라지고 건조시간이 단축되는 경향을 보였으며, 건조 두께 10 mm 조건이 20 mm 조건보다 빠른 것으로 나타났다. 특히 두께 10 mm, 원적외선 건조온도 $80^{\circ}C$, 송풍속도 0.8 m/s 조건에서 건조시간이 63분으로 건조속도가 가장 빠른 것으로 나타났다. 본 연구에서 검증한 건조모델 중 Page 및 Henderson 모델의 경우 전체적인 건조시간대에서 비교적 잘 일치하는 것으로 나타나, 고추 다진 양념의 원적외선 건조 시 Page 및 Henderson 모델을 이용할 경우 높은 정밀도에서 함수율비 예측이 가능한 것으로 나타났다. 원적외선 건조 후 고추 다진 양념의 색차(${\Delta}E$) 값은 두께 10 mm 조건보다 20 mm 조건에서 증가하는 경향을 보였고, 건조온도 $70^{\circ}C$ 조건에서 약간 높은 것으로 나타났으나 오차 범위로 큰 차이는 나타나지 않았다. 원적외선 건조 후 고추 다진 양념의 적색도(a) 값은 두께 20 mm, 건조온도 $80^{\circ}C$ 조건에서 갈변하는 현상이 심화하는 것으로 나타났다. Capsaicin 함량은 건조 두께가 두껍고, 건조온도가 낮으며, 송풍속도가 느릴수록 감소하는 경향을 보였다. 또한, 모든 조건에서 건조 전 capsaicin 함량인 22.15 mg/100 g에 비해 건조 후 capsaicin 함량이 2.24~4.70 mg/100 g 감소하는 것으로 나타났으며, 두께 10 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.8 m/s 조건에서 감소폭이 작은 것으로 나타났다. Dihydrocapsaicin 함량의 경우에도 원적외선 건조 후 1.05~3.82 mg/100 g 감소하는 것으로 나타났고, 두께 10 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.8 m/s 조건에서 감소폭이 작은 것으로 나타났다. 원적외선 건조 중 에너지 소비량은 송풍속도가 느리고 건조온도가 높을수록 감소하였으며, 건조 두께 10 mm 조건이 20 mm 조건보다 적은 경향을 나타내었다. 또한, 두께 10 mm, 건조온도 $80^{\circ}C$, 송풍속도 0.6 m/s 조건에서 에너지 소비량은 5.08 kWh/kg-water로 가장 적은 값을 보였다. 따라서 고추 다진 양념의 건조시간, 건조 중 변색, capsaicinoid 함량 및 에너지 소비량 등을 고려하면 건조 고추 다진 양념의 고품질화를 위해서는 원적외선 건조온도 $80^{\circ}C$, 송풍속도 0.6 m/s, 두께 10 mm 조건이 적절한 건조조건으로 판단된다.

Keywords

References

  1. Lee MK, Kim SH, Ham SS, Lee SY, Chung CK, Kang IJ, Oh DH. 2000. The effect of far infrared ray-vacuum drying on the quality changes of Pimpinella bracycarpa. J Korean Soc Food Sci Nutr 29: 561-567.
  2. Ning XF, Li H, Kang TH, Lee JS, Lee JH, Han CS. 2014. Thin layer drying and quality characteristics of Ainsliaea acerifolia Sch. Bip. using far infrared radiation. J Korean Soc Food Sci Nutr 43: 884-892. https://doi.org/10.3746/jkfn.2014.43.6.884
  3. Li H. 2009. Drying and quality characteristics of agricultural and fishery products using far infrared rays. PhD Dissertation. Chungbuk National University, Cheongju, Korea.
  4. Ning XF. 2012. Drying characteristics and quality of agriculutural products using combined drying of microwave and far infrared. PhD Dissertation. Chungbuk National University, Cheongju, Korea.
  5. Kim CF, Li H, Han CS, Park JS, Lee HC, Cho SC. 2007. Drying characteristics of oak mushroom using stationary farinfrared dryer. J Biosystems Eng 32: 6-12. https://doi.org/10.5307/JBE.2007.32.1.006
  6. Bae NK, Lee JB, Sang HS. 2003. Drying characteristics of red peppers by infrared heating. J Korean Society of Industrial Application 6: 65-71.
  7. Korea Food and Drug Administration. 2011. NLS standard operating procedure analytical methods. Korea Food and Drug Administration, Osong, Korea. p 5-27.
  8. Altan A, Maskan M. 2005. Microwave assisted drying of short-cut (Ditalini) macaroni: Drying characteristics and effect of drying processes on starch properties. Food Res Int 38: 787-796. https://doi.org/10.1016/j.foodres.2005.02.006
  9. Ning XF, Han CS, Li H. 2012. A mathematical model for color changes in red pepper during far infrared drying. J Biosystems Eng 37: 327-334. https://doi.org/10.5307/JBE.2012.37.5.327
  10. Ning XF, Han CS, Cho SC, Lee JS, Yoon SS. 2013. Far infrared drying characteristics and quality assessment of Ligularia fischeri. Food Sci Biotechnol 22: 281-288. https://doi.org/10.1007/s10068-013-0078-9
  11. Page GE. 1949. Factors influencing the maximum rates of air drying shelled corn in thin layers. MS Thesis. Purdue University, West Lafayette, IN, USA.
  12. Westerman PW, White GM, Ross IJ. 1973. Relative humidity effect on the high-temperature drying of shelled corn. Trans ASAE 16: 1136-1139. https://doi.org/10.13031/2013.37715
  13. Rhim JW, Nunes RV, Jones VA, Swartzel KR. 1989. Kinetics of color change of grape juice generated using linearly increasing temperature. J Food Sci 54: 776-777. https://doi.org/10.1111/j.1365-2621.1989.tb04710.x
  14. Jeon G, Lee J. 2009. Comparison of extraction procedures for the determination of capsaicinoids in peppers. Food Sci Biotechnol 18: 1515-1518.
  15. Han SC, Kang TH, Lee JH, Won JH, Cho BH, Cho SC. 2016. Drying characteristics of sea tangle using microwave and far infrared dryer. J Biosystems Eng 41: 43-50. https://doi.org/10.5307/JBE.2016.41.1.043
  16. Noh JK. 2009. Studies on physicochemical properties and physiological activities of green peppers using different drying methods. PhD Dissertation. Kongju National University, Yesan, Korea.
  17. Park BS, Kang TH, Lee JH, Choi JM, Han CS. 2015. Drying characteristics of radishes using far infrared ray dryer. J Biosystems Eng 40: 61-66. https://doi.org/10.5307/JBE.2015.40.1.061
  18. Kang TH, Hong HK, Jeon HY, Han CS. 2011. Drying characteristics of squids according to far infrared and heated air drying conditions. J Biosystems Eng 36: 109-115. https://doi.org/10.5307/JBE.2011.36.2.109