DOI QR코드

DOI QR Code

Evaluation of Radical Scavenging and α-Glucosidase Inhibitory Effects of Gallic Acid Reactants Using Polyphenol Oxidase

폴리페놀산화효소를 활용한 Gallic Acid 반응물의 라디칼 소거 및 α-Glucosidase 저해 활성 평가

  • Jeong, Yun Hee (Department of Food Science and Biotechnology, Daegu University) ;
  • Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
  • 정윤희 (대구대학교 식품공학과) ;
  • 김태훈 (대구대학교 식품공학과)
  • Received : 2016.05.16
  • Accepted : 2016.07.15
  • Published : 2016.09.30

Abstract

Gallic acid is a representative hydroxybenzoic acid and is found in free form in several plants and in various esterified forms as a part of hydolyzable tannins. Convenient enzymatic transformation of trihydroxylated gallic acid with polyphenol oxidase originating from pear was evaluated to investigate whether polyphenol oxidase can be used as a valuable compound to improve the biological activity of gallic acid. Enzymatic oxidation processing of gallic acid using polyphenol oxidase was carried out for five different reaction times. The antioxidant effects of transformed gallic acid for different reaction times were evaluated via radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals. In addition, the anti-diabetic property of the transformed gallic acid was measured based on ${\alpha}$-glucosidase. Gallic acid reacted for 5 h showed significantly higher antioxidant and ${\alpha}$-glucosidase inhibitory activities compared to the tested positive control substances. Biotransformation of simple gallic acid induced by polyphenol oxidase might be responsible for enhancing the biological activity of gallic acid.

폴리페놀 화합물은 천연에 광범위하게 존재하는 천연 화합물로 과일, 주스, 야채 등에 존재하여 일상생활에서 쉽게 섭취할 수 있으며, 이들 화합물의 건강증진 및 질병 예방 효과로 오랫동안 주목을 받고 있다. 천연물 유래의 항산화 및 항당뇨 개발과 관련하여 많은 연구가 효소 저해, 세포 및 동물실험을 통하여 다양하게 이루어져 왔다. 본 연구는 배유래의 polyphenol oxidase를 이용하여 천연에 존재하는 단순 페놀성 화합물인 gallic acid의 산화 축합반응을 실온에서 1, 3, 5, 7, 10시간 동안 유도하여 얻어진 결과물에 대하여 DPPH 및 $ABTS^+$ 라디칼을 활용한 항산화 활성 및 ${\alpha}$-glucosidase 저해능을 통해 항당뇨 활성을 평가하였다. 먼저 DPPH 라디칼 소거 활성은 gallic acid의 5시간 반응물의 경우, $100{\mu}g/mL$의 농도에서 84.9%의 활성을 나타내어, 양성대조군인 (+)-catechin보다 우수한 활성을 나타내었으며 7시간 및 10시간 반응물의 경우 라디칼 소거 활성이 점차 감소하는 경향을 확인하였다. 또한, $ABTS^+$ 라디칼 소거 활성은 반응 1, 3, 5시간 반응물에서 양성대조군인 (+)-catechin보다 강한 라디칼 소거능을 확인하였으며 7시간 반응물부터는 라디칼 소거 활성이 감소함을 확인하였다. ${\alpha}$-Glucosidase 저해능은 5시간 반응물의 $250{\mu}g/mL$ 농도에서 87.4%의 가장 강한 저해 활성을 나타내었으며, 이 활성은 같은 농도에서 양성대조군인 acarbose의 81.8%보다 강한 활성이었다. 향후 이들 반응을 통하여 생성된 화합물의 대량생산을 통한 물질 분리 및 구조 동정을 통하여 항산화 및 항당뇨 활성과 추가적인 메커니즘 검증을 수행할 필요성이 있다고 생각한다.

Keywords

References

  1. Videla LA, Fermandez V. 1988. Biochemical aspects of cellular oxidative stress. Arch Biol Med Exp (Santoago) 21: 85-92.
  2. Halliwell B, Aruoma OI. 1991. DNA damage by oxygenderived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281: 9-19. https://doi.org/10.1016/0014-5793(91)80347-6
  3. Jennings PE, Barnett AH. 1988. New approaches to the pathogenesis and treatment of diabetic microangiopathy. Diabet Med 5: 111-117. https://doi.org/10.1111/j.1464-5491.1988.tb00955.x
  4. Shim JS, Kim SD, Kim TS, Kim KN. 2005. Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol 37: 78-83.
  5. Farag RS, Badei AZMA, Hewedi FM, El-Baroty GSA. 1989. Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. J Am Oil Chem Soc 66: 792-799. https://doi.org/10.1007/BF02653670
  6. Frei B. 1994. National antioxidants in human health and disease. Academic Press Inc., San Diego, CA, USA. p 44-55.
  7. Branen AL. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc 52: 59-63. https://doi.org/10.1007/BF02901825
  8. Matsuoka A, Furuta A, Ozaki M, Fukuhara K, Miyata N. 2001. Resveratrol, a naturally occurring polyphenol, induces sister chromatid exchanges in a Chinese hamster lung (CHL) cell line. Mutat Res 494: 107-113. https://doi.org/10.1016/S1383-5718(01)00184-X
  9. Rubin RR, Peyrot M. 1999. Quality of life and diabetes. Diabetes Metab Res Rev 15: 205-218. https://doi.org/10.1002/(SICI)1520-7560(199905/06)15:3<205::AID-DMRR29>3.0.CO;2-O
  10. Lee SH, Lee JK, Kim IH. 2012. Trends and perspectives in the development of antidiabetic drugs for type 2 diabetes mellitus. Korean J Microbiol Biotechnol 40: 180-185. https://doi.org/10.4014/kjmb.1205.05012
  11. Lee EB, Na GH, Ryu CR, Cho MR. 2004. The review on the study of diabetes mellitus in oriental medicine journals. J Korean Orient Med 25: 169-179.
  12. Schwarz K, Mertz W. 1959. Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys 85: 292-295. https://doi.org/10.1016/0003-9861(59)90479-5
  13. Robertson RP, Harmon J, Tran PO, Poitout V. 2004. ${\beta}$-Cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53: S119-S124. https://doi.org/10.2337/diabetes.53.2007.S119
  14. Tsujimoto T, Shioyama E, Moriya K, Kawaratani H, Shirai Y, Toyohara M, Mitoro A, Yamao J, Fujii H, Fukui H. 2008. Pneumatosis cystoides intestinalis following alpha-glucosidase inhibitor treatment: A case report and review of the literature. World J Gastroenterol 14: 6087-6092. https://doi.org/10.3748/wjg.14.6087
  15. Kihara Y, Ogami Y, Tabaru A, Unoki H, Otsuki M. 1997. Safe and effective treatment of diabetes mellitus associated with chronic liver diseases with an alpha-glucosidase inhibitor, acarbose. J Gastroenterol 32: 777-782. https://doi.org/10.1007/BF02936954
  16. Li Y, Shibahara A, Matsuo Y, Tanaka T, Kouno I. 2010. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins. J Nat Prod 73: 33-39. https://doi.org/10.1021/np900618v
  17. Bae JS, Kim TH. 2012. Enzymatic transformation of caffeic acid with enhanced cyclooxygenase-2 inhibitory activity. Bioorg Med Chem Lett 22: 793-796. https://doi.org/10.1016/j.bmcl.2011.12.072
  18. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK, Lee MS, Kim YM. 2012. ${\alpha}$-Glucosidase- and ${\alpha}$-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric 92: 2084-2090. https://doi.org/10.1002/jsfa.5585
  21. Sies H. 2010. Polyphenols and health: Update and perspectives. Arch Biochem Biophys 501: 2-5. https://doi.org/10.1016/j.abb.2010.04.006
  22. Yasuda T, Inaba A, Ohmori M, Endo T, Kubo S, Ohsawa K. 2000. Urinary metabolites of gallic acid in rats and their radical-scavenging effects on 1,1-diphenyl-2-picrylhydrazyl radical. J Nat Prod 63: 1444-1446. https://doi.org/10.1021/np0000421
  23. Lee SG, Yu MH, Lee SP, Lee IS. 2008. Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J Korean Soc Food Sci Nutr 37: 269-275. https://doi.org/10.3746/jkfn.2008.37.3.269
  24. Li Y, Tanaka T, Kouno I. 2007. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate. Phytochemistry 68: 1081-1088. https://doi.org/10.1016/j.phytochem.2007.01.005
  25. Shin JA, Lee JH, Kim HS, Choi YH, Cho JH, Yoon KH. 2012. Prevention of diabetes: a strategic approach for individual patients. Diabets Metab Res Rev 28: 79-84. https://doi.org/10.1002/dmrr.2357
  26. Bischoff H. 1995. The mechanism of ${\alpha}$-glucosidase inhibition in the management of diabetes. Clin Invest Med 18: 303-311.
  27. Tanaka T, Miyata Y, Tamaya K, Kusano R, Matsuo Y, Tamaru S, Tanaka K, Matsui T, Maeda M, Kouno I. 2009. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves. J Agric Food Chem 57: 5816-5822. https://doi.org/10.1021/jf900963p
  28. Miyata Y, Tamaru S, Tanaka T, Tamaya K, Matsui T, Nagata Y, Tanaka K. 2013. Theaflavins and theasinensin A derived from fermented tea have antihyperglycemic and hypotriacylglycerolemic effects in KK-$A^y$ mice and Sprague-Dawley rats. J Agric Food Chem 61: 9366-9372. https://doi.org/10.1021/jf400123y

Cited by

  1. Antioxidant Activity of Hydrogel Lens Applied with Gallic Acid vol.22, pp.2, 2020, https://doi.org/10.17337/jmbi.2020.22.2.135
  2. 아보카도 씨와 씨 껍질의 항산화 효과 vol.52, pp.1, 2016, https://doi.org/10.22889/kjp.2021.52.1.49