References
- S. J. Lee, W. H. Ha, H. J. Choi, S. Y. Cho, and J. W. Choi, Separation and purification of antihypertensive substances from edible seaweeds, Kor. J. Fish Aquat. Sci., 43(5), 421 (2010). https://doi.org/10.5657/kfas.2010.43.5.421
- D. S. Kim, D. S. Lee, D. M. Cho, H. R. Kim, and J. H. Pyeun, Trace components and functional saccharides in marine algae, Korean J. Fish. Aquat. Sci., 28(3), 270 (1995).
- A. Fortun, A. Khalil, D. Gagne, N. Douziech, C. Kuntz, and D. Dupuis, Monocytes influence the fate of T cells challenged with oxidised low density lipoproteins towards apoptosis or MHC-restricted proliferation, Atherosclerosis, 156(1), 11 (2001). https://doi.org/10.1016/S0021-9150(00)00575-X
- S. Mauray, E. Raucourt, J. C. Talbot, J. Dachary-Prigent, M. Jozefowicz, and A. M. Fisher, Mechanism of factor IXa inhibition by antithrombin in the presence of unfractionated and low molecular weight heparins and fucoidan, Biochim. Biophy. Acta, 1387(1), 184 (1998). https://doi.org/10.1016/S0167-4838(98)00120-4
- A. Saito, M. Yoneda, S. Yokohama, M. Okada, M. Haneda, and K. Nakamura, Fucoidan prevents concanavalian A-induced liver injury through induction of endogenous 1L-10 in mice, Hepatol. Res., 35(3), 190 (2006). https://doi.org/10.1016/j.hepres.2006.03.012
- K. H. Park, E. H. Cho, N. C. Kim, and H. J. Chae, Production of fucoidan using marine algae, Korean J. Biotechnol. Bioeng., 25(3), 223 (2010).
- D. J. Kwon, S. T. Lim, Y. J. Chung, S. H. Park, and D. K. Kweon, Comprehension and practical use of fucoidan extracted from brown seaweeds, Food Sci. Ind., 39(1), 73 (2006).
- L. Chevolot, A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher, and C. Boisson-vidal, Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity, Carbohydr. Res., 319(4), 154 (1999). https://doi.org/10.1016/S0008-6215(99)00127-5
- A. O. Chizhov, A. Della, H. R. Morris, S. M. Haslam, R. A. McDowell, A. S. Shashkov, N. E. Nifant'ev, E. A. Khatuntseva, and A. I. Usov, A study of fucoidan from the brown seaweed Chorda filum, Carbohydr. Res., 320(1), 108 (1999). https://doi.org/10.1016/S0008-6215(99)00148-2
- K. Dobashi, T. Nishino, M. Fufihara, and T. Nagumo, Isolation and preliminary characterization of fucose containing sulfated polysaccharide with blood anticoagulant activity from the brown seaweed, Carbohydr. Res., 194(1), 315 (1989). https://doi.org/10.1016/0008-6215(89)85032-3
- M. Pereira, B. Mulloy, and P. Mourao, Structure and anticoagulant activity of sulfated fucans, J. Biol. Chem., 274(12), 7656 (1999). https://doi.org/10.1074/jbc.274.12.7656
- T. Nishino, Y. Aizu, and T. Nagumo, The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurome, Agri. Biol. Chem., 55(3), 791 (1991). https://doi.org/10.1271/bbb1961.55.791
- J. G. Koo, Structural characterization of purified fucoidan from Laminaria religiosa, sporophylls of Undaria pinnatifida, Hizikia fusiforme and Sargassum fulvellum in Korea, Kor. J. Fish Soc., 30(1), 128 (1997).
- S. H. Cha, J. K. Lee, Y. S. Kim, D. G. Kim, J. C. Moon, and K. P. Park, Proferties of fucoidan as raw materials of water-holding cream and cosmetics, Korean Chem. Eng. Res., 48(1), 27 (2010).
- H. Maruyama, H. Tamauchi, M. Hashimoto, and T. Nakano, Supperssion of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls, Int. Arch. Allergy Immunol., 137(4), 289 (2005). https://doi.org/10.1159/000086422
- E. Furusawa and S. Furusawa, Anticancer potential of viva-natural, a dietary seaweed extract, on lewis lung carcinoma in comparison with chemical immunomodulators and on cyclosporine-accelerated AKR leukemia, Oncology, 46(5), 343 (1989). https://doi.org/10.1159/000226746
- H. Itoh, H. Noda, H. Amano, C. Zhuaug, T. Mizuno, and H. Ito, Antitumar activity and immunological properties of marine algal polysaccharide, especially fucoidan prepared form Sargassum thunbergii of phaeophyceae, Anticancer Res., 13(6A), 2045 (1993).
- S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities, Biochem. Pharmacol., 65(2), 173 (2003). https://doi.org/10.1016/S0006-2952(02)01478-8
- A. Cumashi, N. Ushakova, M. Preobrazhenskaya, A. D'Incecco, A. Piccoli, L. Totani, N. Tinari, G. Morozevich, A. Berman, M. Bilan, A. I. Usov, N. Ustyuzhanina, A. Grachev, C. Sanderson, M. Kelly, G. Rabinovich, S. Iacobelli, and N. E. Nifantiev, A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiol., 17(5), 541 (2007). https://doi.org/10.1093/glycob/cwm014
- R. Cooper, C. Dragar, K. Elliot, J. Fitton, J. Godwin, and K. Thompso, GFS, a preparation of Tasmanian Undaria pinnatifida associated with healing and inhibition of reactivation of Herpes, BMC Complement. Altern. Med., 2(1), 1 (2002). https://doi.org/10.1186/1472-6882-2-1
- M. Baba, R. Snoeck, R. Pauwels, and E. D. Clercq, Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodefieiency virus, Antimicrob. Agents Chemother., 32(11), 1742 (1988). https://doi.org/10.1128/AAC.32.11.1742
- N. Ponce, C. Pujol, E. Damonte, M. Flores, and C. Stortz, Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies, Carbohydr. Res., 338(2), 153 (2003). https://doi.org/10.1016/S0008-6215(02)00403-2
- S. reeprame, K. Hayashi, J. B. Lee, U. Sankawa, and T. Hayashi, A novel antivirally active fucan sulfate derived from an edible brown alga Sargassum horneri, Chem. Pharm. Bull., l49(4), 484 (2001).
- Q. Zhang, Z. Lee, X. Niu, and Z. Hong, Effects of fucoidan on chronic renal failure in rats, Planta Med., 69(6), 537 (2003). https://doi.org/10.1055/s-2003-40634
- H. S. Jeong and J. H. Lee, Effects of dietary fiber from mosuku (Cladosiphon novae-caledoniae kylin) residue on antioxidant activity and anticancer in HT-29 human colon cancer cells according to extraction condition, Appl. Chem. Eng., 25(4), 363 (2014). https://doi.org/10.14478/ace.2014.1039
- I. H. Kim, D. G. Lee, S. H. Lee, J. M. Ha, B. J. Ha, S. G. Kim, and J. H. Lee, Antibacterial activity of Ulva lactuca against methcilline-resistance Staphylococcus aureus (MRSA), Biotechnol. Bioprocess Eng., 12(1), 579 (2007). https://doi.org/10.1007/BF02931358
- D. Hultmark, A. Engstrom, H. Bennich, R. Kapur, and H. G. Boman, Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Eur. J. Biochem., 127(1), 207 (1982). https://doi.org/10.1111/j.1432-1033.1982.tb06857.x
- R. I. Lehrer, M. Roseman, S. Harwig, R. Jackson, and P. Eisenhauer, Ultrasenstive assays for endogenous antimicrobial polypeptides, J. Immunol. Methods, 137(2), 67 (1991).
- V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagents, J. Enol. Viticult., 16(1), 144 (1965).
- C. C. Chang, M. H. Yang, H. M. Wen, and J. C. Chen, Estimation of total flavonoids contents in propolis by two complementary colorimetric methods, J. Food Drug Anal., 10(3), 178 (2002).
- K. Ishihara, T. Takemura, Y. Hamada, C. Sakai, S. Kondon, S. Nishiyama, K. Urabe, and J. Hearing, Pigment production in murine melanoma cell is regulated by tyrosinase, tyrosinase-related protein 1 (TRP1), DOPA chrome tautomerase (TRP2), and a melanogenic inhibitor, J. Invest. Dermatol., 100(3), 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
- T. S. Chang, An updated review of tyrosinase inhibitor, Int. J. Mol. Sci., 10(6), 2440 (2009). https://doi.org/10.3390/ijms10062440
- J. Bieth, B. Spiess, and C. Wermuth, The synthesis and analytical use of a high sensitive and convenient substrate of elastase, Biochem. Med., 11(4), 350 (1974). https://doi.org/10.1016/0006-2944(74)90134-3
- D. Gerlier and N. Thomasset, Use of MTT colorimeter assay to measure cell activation, J. Immunol. Methods, 94(2), 57 (1986). https://doi.org/10.1016/0022-1759(86)90215-2
- R. Busca and R. Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cell Res., 13(2), 60 (2000). https://doi.org/10.1034/j.1600-0749.2000.130203.x
- N. Tsuji, S. Moriwaki, Y. Suzuki, Y. Takema, and G. Imokawa, The role of elastase secreted by fibroblasts in wrinkle formation: implication through selective inhibition of elastase activity, Phtochem. Photobiol. J., 74(2), 283 (2001). https://doi.org/10.1562/0031-8655(2001)074<0283:TROESB>2.0.CO;2
- D. L. Dewitt, T. E. Rollins, J. S. Day, J. A. Gauge, and W. L. Smith, Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum, J. Biol. Chem., 256(20), 10375 (1981).