DOI QR코드

DOI QR Code

Cellular responses and proteomic analysis of hemolytic Bacillus cereus MH-2 exposed to epigallocatechin gallate (EGCG)

Epigallocatechin Gallate (EGCG)에 노출된 용혈성 Bacillus cereus MH-2의 세포 반응 및 프로테옴 분석

  • Kim, Dong-Min (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Park, Sang-Kook (Department of Life Science and Biotechnology, Soonchunhyang University) ;
  • Oh, Kye-Heon (Department of Life Science and Biotechnology, Soonchunhyang University)
  • 김동민 (순천향대학교 자연과학대학 생명시스템학과) ;
  • 박상국 (순천향대학교 자연과학대학 생명시스템학과) ;
  • 오계헌 (순천향대학교 자연과학대학 생명시스템학과)
  • Received : 2016.07.28
  • Accepted : 2016.08.12
  • Published : 2016.09.30

Abstract

The aim of this work was to investigate the cellular responses and proteomic analysis of Bacillus cereus MH-2 exposed to EGCG. Strain MH-2 was isolated from commercial Ssamjang and has the hemolytic activity. Survival of the MH-2 strain with time in the presence of different concentrations of EGCG under sublethal conditions was monitored. The amount of alginate from MH-2 strain decreased depending on the increasing concentrations of EGCG and increased depending on the exposure time at any particular EGCG concentration. Analysis of SDS-PAGE and Western blot using anti-DnaK and anti-GroEL revealed that two stress shock proteins, 70 kDa DnaK and 60 kDa GroEL were found to decrease in proportion to the EGCG concentration in exponentially growing cultures. Scanning electron microscopic analysis demonstrated the presence of protrusions and fused rod forms on the cells treated with EGCG. 2-DE of soluble protein fractions from MH-2 cultures showed 20 protein spots changed by EGCG exposure. These proteins involved in enterotoxins (hemolysin BL lytic component L1 and hemolysin BL-binding protein), chaperons (DnaK and GroEL), cell defense (peptidase M4 family proteins), and various biosynthesis and energy metabolism were identified by peptide mass fingerprinting using MALDI-TOF. These results provide clues for understanding the mechanism of EGCG-induced stress and cytotoxicity on B. cereus MH-2.

본 연구의 목적은 시중에 판매되고 있는 쌈장에서 용혈성을 가지는 Bacillus cereus MH-2를 분리하여, EGCG 노출에 따른 MH-2 균주의 세포 반응과 프로테옴 분석을 위해 수행되었다. 다양한 농도의 EGCG에 노출된 MH-2 균주는 노출시간이 증가함에 따라 생존률은 점차 감소함을 보였다. MH-2 균주의 alginate 생성량은 EGCG의 농도가 증가함에 따라 감소하였으며, 특정 EGCG 농도에서 노출시간이 진행됨에 따라 그 생성량은 증가하는 것으로 나타났다. SDS-PAGE 및 anti-DnaK와 anti-GroEL의 단일항체를 이용한 Western blot 통한 분석으로, 두 가지 스트레스 충격단백질인 70 kDa의 DnaK와 60 kDa의 GroEL의 발현은 대수생장기의 배양에서 EGCG의 농도에 비례하여 감소하는 것을 확인하였다. EGCG에 노출된 세균의 세포 외부형태 변화를 주사전자현미경을 이용하여 관찰한 결과, 세포 표면의 돌출부 생성과 함께 세포의 뭉그러짐이 관찰되었다. EGCG에 노출된 Bacillus cereus MH-2 배양의 수용성 단백질 부분에 대한 2-DE에서 20개의 단백질 스팟이 EGCG 노출에 의해 크게 변화하는 것이 확인되었다. 장독소(hemolysin BL lytic component L1, hemolysin BL-binding protein), chaperon (DnaK, GroEL), 세포방어요소(peptidase M4 family proteins), 에너지 및 물질대사 등에 수반되는 이들 단백질은 MALDI-TOF를 사용한 peptide mass fingerprinting에 의해 동정되었다. 이들 결과는 B. cereus MH-2에 대한 EGCG-유도 스트레스와 세포독성의 기작을 이해하는데 중요한 단서를 제공할 것이다.

Keywords

References

  1. Arnesen, L.P., Fagerlund, A., and Granum, P.E. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
  2. Bollag, D.M., Rozycki, M.D., and Edelstein, S.J. 1996. Protein methods. 2nd ed. New York, Wiley-Liss, USA.
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Chang, W.S., van-de-Mortel, M., Nielsen, L., de-Guzman, G.N., Li, X., and Halverson, L.J. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J. Bacteriol. 189, 8290-8299. https://doi.org/10.1128/JB.00727-07
  5. Cho, Y.S., Oh, J.J., and Oh, K.H. 2010. Antimicrobial activity and biofilm formation inhibition of green tea polyphenols on human teeth. Biotechnol. Bioproc. Eng. 15, 359-364. https://doi.org/10.1007/s12257-009-0195-8
  6. Cho, Y.S., Oh, J.J., and Oh, K.H. 2011. Synergistic anti-bacterial and proteomic effects of epigallocatechin gallate on clinical isolates of imipenem-resistant Klebsiella pneumoniae. Phytomedicine 18, 941-946. https://doi.org/10.1016/j.phymed.2011.03.012
  7. Choi, K.B., Lim, H.S., Lee, K., Ha, G.Y., Jung, K.H., and Sohn, C.K. 2011. Epidemiological investigation for outbreak of food poisoning caused by Bacillus cereus among the workers at a local company in 2010. J. Prev. Med. Public Health 44, 65-73. https://doi.org/10.3961/jpmph.2011.44.2.65
  8. Cottrell, J.S. and London, U. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 355-3567. https://doi.org/10.1002/(SICI)1522-2683(19990201)20:2<355::AID-ELPS355>3.0.CO;2-N
  9. Friedman, M., Henika, P.R., Levin, C.E., Mandrell, R.E., and Kozukue, N. 2006. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J. Food Prot. 69, 354-361. https://doi.org/10.4315/0362-028X-69.2.354
  10. Granum, P.E. and Lund, T. 1997. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157, 223-228. https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  11. Guinebretiere, M.H. and Broussolle, V. 2002. The enterotoxigenic pro files of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40, 3053-3056. https://doi.org/10.1128/JCM.40.8.3053-3056.2002
  12. Ho, E.M., Chang, H.W., Kim, S.I., Kahng, H.Y., and Oh, K.H. 2004. Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr. Microbiol. 49, 346-352. https://doi.org/10.1007/s00284-004-4322-7
  13. Ikigai, H., Nakae, T., Hara, Y., and Shimamura, T. 1993. Bactericidal catechins damage the lipid bilayer. Biochim. Biophy. Acta. 1147, 132-136. https://doi.org/10.1016/0005-2736(93)90323-R
  14. Kang, B.R., Im, G.E., and Kim, D.H. 2013. Effect of anti-microbial materials on storages of Ssamjang. J. Appl. Biol. Chem. 56, 11-17. https://doi.org/10.3839/jabc.2013.003
  15. Keith, L.M. and Bender, C.L. 1999. AlgT (${\sigma}^{22}$) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J. Bacteriol. 181, 7176-7184.
  16. Kwak, C.S., Lee, M.S., and Park, S.C. 2007. Higher antioxidant properties of cheonggukjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 27, 719-727. https://doi.org/10.1016/j.nutres.2007.09.004
  17. Lee, K.I., Moon, R.J., Lee, S.J., and Park, K.Y. 2001. The quality assessment of doenjang added with Japanese apricot, garlic and ginger, and samjang. Korean J. Soc. Food Cookery Sci. 17, 472-477.
  18. Lee, B.U., Park, S.C., Cho, Y.S., and Oh, K.H. 2008. Exopolymer biosynthesis and proteomic changes of Pseudomonas sp. HK-6 under stress of TNT (2, 4, 6-trinitrotoluene). Curr. Microbiol. 57, 477-483. https://doi.org/10.1007/s00284-008-9272-z
  19. Periago, P.M., van Schaik, W., Abee, T., and Wouters, J.A. 2002. Identification of proteins involved in the heat stress response of Bacillus cereus ATCC 14579. Appl. Environ. Microbiol. 68, 3486-3495. https://doi.org/10.1128/AEM.68.7.3486-3495.2002
  20. Ryan, P.A., Macmillan, J.D., and Zilinskas, B.A. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179, 2551-2556. https://doi.org/10.1128/jb.179.8.2551-2556.1997
  21. Sambrook, J., Fritsch, E.F., and Maniatis, T. 2001. Molecular cloning, pp. 14-19. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.
  22. Shigemune, N., Nakayama, M., Tsugukuni, T., Hitomi, J., Yoshizawa, C., Mekada, Y., Kurahachi, M., and Miyamoto, T. 2012. The mechanisms and effect of epigallocatechin gallate (EGCg) on the germination and proliferation of bacterial spores. Food Control 27, 269-274. https://doi.org/10.1016/j.foodcont.2012.04.003
  23. Shimamura, T., Zhao, W.H., and Hu, Z.Q. 2007. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infect. Agents Med. Chem, 6, 57-62. https://doi.org/10.2174/187152107779314124
  24. Song, Y.J., Cho, Y.S., and Oh, K.H. 2010. Antibacterial effects and cellular responses of imipenem-resistant Pseudomonas aeruginosa exposed to green tea polyphenols. J. Microbiol. 38, 198-206.
  25. Yokoyama, K., Ito, M., Agata, N., Isobe, M., Shibayama, K., Horii, T., and Ohta, M. 1999. Pathological effect of cereulide, an emetic toxin of Bacillus cereus, is reversible in mice. FEMS Immunol. Med. Microbiol. 24, 115-120. https://doi.org/10.1111/j.1574-695X.1999.tb01272.x
  26. Yu, M.O., Chun, J.W., and Oh, K.H. 2004. Effect of tea catechin, EGCG (epigallocatechin gallate) on killing of oral bacteria. Korean J. Microbiol. 40, 364-366.

Cited by

  1. Identification and Characterization of Hemolytic Bacillus cereus Isolated from Commercial Ssam-jang vol.32, pp.3, 2017, https://doi.org/10.7841/ksbbj.2017.32.3.179