DOI QR코드

DOI QR Code

Identification of three pathways for p-cresol catabolism and their gene expression in Pseudomonas alkylphenolica KL28

Pseudomonas alkylphenolica KL28에 존재하는 3종류의 p-cresol 분해 경로 및 유전자 발현

  • Sung, Jin Il (Department of Bio Health Science, Changwon National University) ;
  • Lee, Kyoung (Department of Bio Health Science, Changwon National University)
  • 성진일 (창원대학교 생명보건학부) ;
  • 이경 (창원대학교 생명보건학부)
  • Received : 2016.08.24
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

Previously our laboratory showed that Pseudomonas alkylphenolica KL28 possesses two different lap and pcu gene clusters for p-cresol catabolism. In this study, additional gene cluster (pchACXF-pcaHG-orf4-pcaBC) has been identified to encode enzymes necessary for catabolism of p-cresol to ${\beta}$-carboxy-cis,cis-muconate. This gene cluster showed almost identical nucleotide sequence homologies to those in the plasmid of Pseudomonas putida NCIMB 9866 and 9869, British origins, indicating the possibility of a horizontal gene transfer. Through mutagenesis of each gene cluster and gfp-based promoter reporter assays, it has been shown that the three gene clusters are functionally operated and pch genes are induced by p-cresol. Furthermore, the pcu gene cluster of the three was shown to be dominantly expressed in utilization of p-cresol. Mutation of the pcu gene was defective in aerial structure formation under p-cresol vapor, indicating the utilization rate of carbon source is one of key elements for the multicellular development of this strain.

본 연구에서는 p-cresol 초기 분해에 관여하는 기존의 lap과 pcu 유전자군 외에 새로운 pch 유전자군을 Pseudomonas alkylphenolica KL28로 부터 동정하였다. 이 유전자군(pchACXF-pcaHG-orf4-pcaBC)은 p-cresol을 ${\beta}$-carboxy-cis,cis-muconate로의 전환을 촉매할 수 있는 효소를 암호화하는 것을 알 수 있었다. 이 유전자 군은 영국에서 분리된 Pseudomonas putida NCIMB 9866과 9869의 plasmid에서 유래된 pch 유전자 군과 동일하여, 이들 유전자군은 종간 horizontal gene transfer로 전달되었을 가능성을 제시하였다. 각 유전자군의 관련 유전자의 변이와 gfp 레포터를 갖는 프로모터의 발현 분석을 통해 3개의 분해 유전자군이 모두 p-cresol의 분해에 관여하는 것을 알 수 있었으며, pch 유전자는 p-cresol에 의해 유도되며, 고체 및 액체 배지에서도 pcu 유전자군이 가장 높게 발현되는 것을 확인할 수 있었다. 또한 pcu 유전자 변이주는 p-cresol을 이용하여 버섯모양의 공중체(aerial structure) 형성하지 않았으므로, 탄소원의 이용 속도가 다세포 구조 형성에 영향을 주는 중요한 요소 중의 하나임을 알 수 있었다.

Keywords

References

  1. Bayly, R.C., Dagley, S., and Gibson, D.T. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101, 293-301. https://doi.org/10.1042/bj1010293
  2. Chang, M.C., Chang, H.H., Chan, C.P., Yeung, S.Y., Hsien, H.C., Lin, B.R., Yeh, C.Y., Tseng, W.Y., Tseng, S.K., and Jeng, J.H. 2014. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One 9, e114446. https://doi.org/10.1371/journal.pone.0114446
  3. Chang, A.C. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156.
  4. Chen, Y.F., Chao, H., and Zhou, N.Y. 2014. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl. Microbiol. Biotechnol. 98, 1349-1356. https://doi.org/10.1007/s00253-013-5001-z
  5. Cho, J.H., Jung, D.K., Lee, K., and Rhee, S. 2009. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J. Biol. Chem. 284, 34321-34330. https://doi.org/10.1074/jbc.M109.031054
  6. Cho, A.R., Lim, E.J., Veeranagouda, Y., and Lee, K. 2011. Identification of a p-cresol degradation pathway by a GFP-based transposon in Pseudomonas and its dominant expression in colonies. J. Microbiol. Biotechnol. 21, 1179-1183. https://doi.org/10.4014/jmb.1104.04006
  7. Cunane, L.M., Chen, Z.W., Shamala, N., Mathews, F.S., Cronin, C.N., and McIntire, W.S. 2000. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J. Mol. Biol. 295, 357-374. https://doi.org/10.1006/jmbi.1999.3290
  8. Dagley, S. and Patel, M.D. 1957. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem. J. 66, 227-233. https://doi.org/10.1042/bj0660227
  9. Dennis, J.J. and Zylstra, G.J. 1998. Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gramnegative bacterial genomes. Appl. Environ. Microbiol. 64, 2710-2715.
  10. Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., and Lee, K. 2003. 3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265-3277. https://doi.org/10.1099/mic.0.26628-0
  11. Joesaar, M., Heinaru, E., Viggor, S., Vedler, E., and Heinaru, A. 2010. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol. Ecol. 72, 464-475. https://doi.org/10.1111/j.1574-6941.2010.00858.x
  12. Kim, J., Fuller, J.H., Cecchini, G., and McIntire, W.S. 1994. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176, 6349-6361. https://doi.org/10.1128/jb.176.20.6349-6361.1994
  13. Kim, J.Y., Kim, J.K., Lee, S.O., Kim, C.K., and Lee, K. 2005. Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Lett. Appl. Microbiol. 41, 163-168. https://doi.org/10.1111/j.1472-765X.2005.01734.x
  14. Kukor, J.J. and Olsen, R.H. 1992. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol. 174, 6518-6526. https://doi.org/10.1128/jb.174.20.6518-6526.1992
  15. Lee, K. 2013. Construction of overexpression vectors and purification of the oxygenase component of alkylphenol hydroxylase of Pseudomonas alkylphenolia. Korean J. Microbiol. 49, 95-98. https://doi.org/10.7845/kjm.2013.008
  16. Lee, K., Lim, E.J., Kim, K.S., Huang, S.L., Veeranagouda, Y., and Rehm, B.H. 2014. An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Appl. Microbiol. Biotechnol. 98, 4137-4148. https://doi.org/10.1007/s00253-014-5529-6
  17. Lee, K. and Veeranagouda, Y. 2009. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ. Microbiol. 11, 1117-1125. https://doi.org/10.1111/j.1462-2920.2008.01841.x
  18. Li, D., Yan, Y., Ping, S., Chen, M., Zhang, W., Li, L., Lin, W., Geng, L., Liu, W., Lu, W., and Lin, M. 2010. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol. 10, 36. https://doi.org/10.1186/1471-2180-10-36
  19. Miller, W.G., Leveau, J.H., and Lindow, S.E. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant Microbe Interact. 13, 1243-1250. https://doi.org/10.1094/MPMI.2000.13.11.1243
  20. Mulet, M., Sanchez, D., Lalucat, J., Lee, K., and Garcia-Valdes, E. 2015. Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int. J. Syst. Evol. Microbiol. 65, 4013-4018. https://doi.org/10.1099/ijsem.0.000529
  21. Naessens, M. and Vandamme, E.J. 2003. Multiple forms of microbial enzymes. Biotechnol. Lett. 25, 1119-1124. https://doi.org/10.1023/A:1024540902848
  22. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  23. Shingler, V., Powlowski, J., and Marklund, U. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711-724. https://doi.org/10.1128/jb.174.3.711-724.1992
  24. Stanier, R.Y., Palleroni, N.J., and Doudoroff, M. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271. https://doi.org/10.1099/00221287-43-2-159
  25. Veeranagouda, Y., Basavaraja, C., Bae, H.S., Liu, K.H., and Lee, K. 2011. Augmented production of poly-${\beta}$-D-mannuronate and its acetylated forms by Pseudomonas. Process Biochem. 46, 328-334. https://doi.org/10.1016/j.procbio.2010.09.009
  26. Veeranagouda, Y., Lee, K., Cho, A.R., Cho, K., Anderson, E.M., and Lam, J.S. 2011. Ssg, a putative glycosyltransferase, functions in lipo-and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia. FEMS Microbiol. Lett. 315, 38-45. https://doi.org/10.1111/j.1574-6968.2010.02172.x
  27. Veeranagouda, Y., Lim, E.J., Kim, D.W., Kim, J.K., Cho, K., Heipieper, H.J., and Lee, K. 2009. Formation of specialized aerial architectures by Rhodococcus during utilization of vaporized p-cresol. Microbiology 155, 3788-3796. https://doi.org/10.1099/mic.0.029926-0
  28. Wright, A. and Olsen, R.H. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60, 235-242.
  29. Yan, Z., Wei, X., Yuan, Y., Li, Z., Li, D., Liu, X., and Gao, L. 2016. Deodorization of pig manure using lignin peroxidase with different electron acceptors. J. Air Waste Manag. Assoc. 66, 420-428. https://doi.org/10.1080/10962247.2016.1144660
  30. Yun, J.I., Cho, K.M., Kim, J.K., Lee, S.O., Cho, K., and Lee, K. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269, 97-103. https://doi.org/10.1111/j.1574-6968.2006.00610.x