References
- Chanzy, H.D., Grosrenaud, A., Vuong, R., and Mackie, W. 1984. The crystalline polymorphism of mannan in plant cell walls and after recrystallization. Planta 161, 320-329. https://doi.org/10.1007/BF00398722
- Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
-
Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable
${\beta}$ -mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96. - Kataoka, N. and Tokiwa, Y. 1998. Isolation and characterization of an active mannanase-producing anaerobic bacerium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 84, 357-367. https://doi.org/10.1046/j.1365-2672.1998.00349.x
-
Kim, D.Y., Ham, S.J., Lee, H.J., Cho, H.Y., Kim, J.H., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011a. Cloning and characterization of a modular GH5
${\beta}$ -1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102, 9185-9192. https://doi.org/10.1016/j.biortech.2011.06.073 -
Kim, D.Y., Ham, S.J., Lee, H.J., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011b. A highly active endo-
${\beta}$ -1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb. Technol. 48, 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013 -
Kim, D.Y., Lee, M.J., Cho, H.Y., Lee, J.S., Lee, M.H., Chung, C.W., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2016. Genetic and functional characterization of an extracellular modular GH6 endo-
${\beta}$ -1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Antonie van Leeuwenhoek 109, 1-12. https://doi.org/10.1007/s10482-015-0604-2 - Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M., and Hatanaka, T. 2012. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 94, 2783-2790. https://doi.org/10.1016/j.biochi.2012.09.012
- Kumagai, Y., Kawakami, K., Uraji, M., and Hatanaka, T. 2013. Effect of the binding of bivalent ion to the calcium-binding site responsible for the thermal stability of actinomycete mannanase: Potential use in production of functional mannooligosaccharides. J. Mol. Cataly. B: Enzym. 94, 63-68. https://doi.org/10.1016/j.molcatb.2013.05.001
-
Kumagai, Y., Usuki, H., Yamamoto, Y., Yamasato, A., Arima, J., Mukaihara, T., and Hatanaka, T. 2011. Characterization of calcium ion sensitive region for
${\beta}$ -mannanase from Streptomyces thermolilacinus. Biochim. Biophys. Acta. 1814, 1127-1133. https://doi.org/10.1016/j.bbapap.2011.04.017 - Kumagai, Y., Yamashita, K., Tagami, T., Uraji, M., Wan, K., Okuyama, M., Yao, M., Kimura, A., and Hatanaka, T. 2015. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J. 282, 4001-4014. https://doi.org/10.1111/febs.13401
- Kweun, M.A., Lee, M.S., Choi, J.H., Cho, K.H., and Yoon, K.H. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
-
Li, R.K., Chen, P., Ng, T.B., Yang, J., Lin, J., Yan, F., and Ye, X.Y. 2015. Highly efficient expression and characterization of a
${\beta}$ -mannanase from Bacillus subtilis in Pichia pastoris. Biotechnol. Appl. Biochem. 62, 64-70. https://doi.org/10.1002/bab.1250 - Liu, J., Xu, Q., Zhang, J., Zhou, X., Lyu, F., Zhao, P., and Ding, Y. 2015. Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydr. Polym. 130, 398-404. https://doi.org/10.1016/j.carbpol.2015.05.025
-
Malgas, S., van Dyk, J.S., and Pletschke, B.I. 2015. A review of the enzymatic hydrolysis of mannans and synergistic interactions between
${\beta}$ -mannanase,${\beta}$ -mannosidase and${\alpha}$ -galactosidase. World J. Microbiol. Biotechnol. 31, 1167-1175. https://doi.org/10.1007/s11274-015-1878-2 - McCleary, B.V. 1985. The fine structure of carob and guar galactomannans. Carbohydr. Res. 139, 237-260. https://doi.org/10.1016/0008-6215(85)90024-2
-
Mok, C.H., Lee, J.H., and Kim, B.G. 2013. Effects of exogenous phytase and
${\beta}$ -mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Anim. Feed Sci. Technol. 186, 209-213. https://doi.org/10.1016/j.anifeedsci.2013.10.008 - Pangsri, P., Piwpankaew, Y., Ingkakul, A., Nitisinprasert, S., and Keawsompong, S. 2015. Characterization of mannanase from Bacillus circulans NT 6.7 and its application in mannooligosaccharides preparation as prebiotic. Springerplus 4, 771. https://doi.org/10.1186/s40064-015-1565-7
- Petersen, T.N., Brunak, S., von Heijnem, G., and Nielsen, H. 2011. SignalP4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786. https://doi.org/10.1038/nmeth.1701
-
Sakakibara, Y., Tsutsumi, K., Nakamura, K., and Yamane, K. 1993. Structural requirements of Bacillus subtilis
${\alpha}$ -amylase signal peptide for efficient processing: in vivo pulse-chase experiments with mutant signal peptides. J. Bacteriol. 175, 4203-4212. https://doi.org/10.1128/jb.175.13.4203-4212.1993 - Schumann, P., Weiss, N., and Stackebrandt, E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51, 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
-
Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M., Murata, S., Itoh, E., Yamamoto, T., Sugimura, Y., et al. 2015. Novel
${\beta}$ -1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914-27927. https://doi.org/10.1074/jbc.M115.661645 - Srivastava, P.K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 392-417. https://doi.org/10.1080/10826068.2013.833108
- Stoll, D., Stalbrand, H., and Warren, R.A. 1999. Mannan-degrading enzymes from Cellulomonas fimi. Appl. Environ. Microbiol. 65, 2598-2605.
- Tjalsma, H. and van Dijl, J.M. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5, 4472-4482. https://doi.org/10.1002/pmic.200402080
-
Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H., and Yao, B. 2016. A novel glycoside hydrolase family 113 endo-
${\beta}$ -1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Appl. Environ. Microbiol. 82, 2718-2727. https://doi.org/10.1128/AEM.04071-15 - Yoon, K.H. 2011. Production and properties of hemicellulases by a Cellulosimicrobium sp. isolate. Kor. J. Microbiol. Biotechnol. 39, 252-258.
-
Yoon, K.H. 2015. Characterization of two
${\beta}$ -mannanases from Cellulosimicrobium sp. YB-43. Korean J. Microbiol. 51, 263-270. https://doi.org/10.7845/kjm.2015.5032 - Yoon, K.H. and Lim, B.L. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694.
- Zhang, C., Chen, J.D., and Yang, F.Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175-181. https://doi.org/10.1016/j.carbpol.2013.12.081
- Zhou, H., Yang, Y., Nie, X., Yang, W., and Wu, Y. 2013. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23. Microb. Cell Fact. 12, 78. https://doi.org/10.1186/1475-2859-12-78
-
Zou, Y., Lin, J., Bu, X., Jiang, L., Chen, Z., and Ge, X. 2015. Characterization of
${\beta}$ -1, 4-mannanase from Bacillus pumilus and heterologous expression in Lactobacillus casei. Wei Sheng Wu Xue Bao 55, 1576-1583.
Cited by
- Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성 vol.54, pp.2, 2016, https://doi.org/10.7845/kjm.2018.8019