DOI QR코드

DOI QR Code

Molecular cloning and characterization of β-mannanase B from Cellulosimicrobium sp. YB-43

Cellulosimicrobium sp. YB-43의 mannanase B 유전자 클로닝과 특성 분석

  • Yoon, Ki-Hong (Food Science and Biotechnology Major, Woosong University)
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2016.08.01
  • Accepted : 2016.08.29
  • Published : 2016.09.30

Abstract

A mannanase gene was cloned into Escherichia coli from Cellulosimicrobium sp. YB-43, which had been found to produce two kinds of mannanase, and sequenced completely. This mannanase gene, designated manB, consisted of 1,284 nucleotides encoding a polypeptide of 427 amino acid residues. Based on the deduced amino acid sequence, the ManB was identified to be a modular enzyme including two carbohydrate binding domains besides the catalytic domain, which was highly homologous to mannanases belonging to the glycosyl hydrolase family 5. The N-terminal amino acid sequence of ManB, purified from a cell-free extract of the recombinant E. coli carrying a Cellulosimicrobium sp. YB-43 manB gene, has been determined as QGASAASDG, which was correctly corresponding to signal peptide predicted by SignalP4.1 server for Gram-negative bacteria. The purified ManB had a pH optimum for its activity at pH 6.5~7.0 and a temperature optimum at $55^{\circ}C$. The enzyme was active on locust bean gum (LBG), konjac and guar gum, while it did not exhibit activity towards carboxymethylcellulose, xylan, starch, and para-nitrophenyl-${\beta}$-mannopyranoside. The activity of enzyme was inhibited very slightly by $Mg^{2+}$, $K^+$, and $Na^+$, and significantly inhibited by $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$, and SDS. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose, which was the most predominant product resulting from the ManB hydrolysis for mannooligosaccharides and LBG.

두 종류의 mannanases를 생산하는 Cellulosimicrobium sp. YB-43로부터 mannanase 유전자를 클로닝하고 그 염기서열을 결정하였다. Mannanase 유전자는 manB로 명명되었으며, 427 아미노 잔기로 구성된 단백질을 코드하는 1,284개 염기로 구성되었다. ManB는 추론된 아미노산 배열에 근거해서 glycosyl hydrolase family 5에 속하는 mannanase와 상동성이 높은 활성영역과 함께 2개의 탄수화물 결합영역을 포함하고 있는 다영역 효소로 확인되었다. Cellulosimicrobium sp. YB-43의 manB 유전자를 함유한 재조합 대장균의 균체 파쇄상등액으로부터 정제된 ManB의 아미노 말단 배열이 QGASAASDG로 결정되었으며 이는 SignalP4.1 server로 그람 음성균을 기준으로 예측된 signal peptide의 결과와 정확하기 일치하였다. 정제된 ManB의 최적 반응조건은 $55^{\circ}C$와 pH 6.5-7.0이며 locust bean gum (LBG), konjac과 guar gum을 가수분해 하였으며, 셀룰로스, 자일란, 전분과 para-nitrophenyl-${\beta}$-mannopyranoside에 대해서는 분해활성이 없었다. ManB의 활성은 $Mg^{2+}$, $K^+$$Na^+$에 의해 약간 저해되었으며 $Cu^{2+}$, $Zn^{2+}$, $Mn^{2+}$과 SDS에 의해서는 크게 저해되었다. 또한 이 효소는 mannobiose 보다 큰 중합도를 갖는 만노올리고당을 가수분해하였으며, LBG와 만노올리고당을 가수분해하였을 때 mannobiose가 가장 많은 양으로 생성되었다.

Keywords

References

  1. Chanzy, H.D., Grosrenaud, A., Vuong, R., and Mackie, W. 1984. The crystalline polymorphism of mannan in plant cell walls and after recrystallization. Planta 161, 320-329. https://doi.org/10.1007/BF00398722
  2. Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
  3. Jiang, Z., Wei, Y., Li, D., Li, L., Chai, P., and Kusakabe, I. 2006. High-level production, purification and characterization of a thermostable ${\beta}$-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr. Polym. 66, 68-96.
  4. Kataoka, N. and Tokiwa, Y. 1998. Isolation and characterization of an active mannanase-producing anaerobic bacerium, Clostridium tertium KT-5A, from lotus soil. J. Appl. Microbiol. 84, 357-367. https://doi.org/10.1046/j.1365-2672.1998.00349.x
  5. Kim, D.Y., Ham, S.J., Lee, H.J., Cho, H.Y., Kim, J.H., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011a. Cloning and characterization of a modular GH5 ${\beta}$-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102, 9185-9192. https://doi.org/10.1016/j.biortech.2011.06.073
  6. Kim, D.Y., Ham, S.J., Lee, H.J., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011b. A highly active endo-${\beta}$-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb. Technol. 48, 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013
  7. Kim, D.Y., Lee, M.J., Cho, H.Y., Lee, J.S., Lee, M.H., Chung, C.W., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2016. Genetic and functional characterization of an extracellular modular GH6 endo-${\beta}$-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13. Antonie van Leeuwenhoek 109, 1-12. https://doi.org/10.1007/s10482-015-0604-2
  8. Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M., and Hatanaka, T. 2012. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 94, 2783-2790. https://doi.org/10.1016/j.biochi.2012.09.012
  9. Kumagai, Y., Kawakami, K., Uraji, M., and Hatanaka, T. 2013. Effect of the binding of bivalent ion to the calcium-binding site responsible for the thermal stability of actinomycete mannanase: Potential use in production of functional mannooligosaccharides. J. Mol. Cataly. B: Enzym. 94, 63-68. https://doi.org/10.1016/j.molcatb.2013.05.001
  10. Kumagai, Y., Usuki, H., Yamamoto, Y., Yamasato, A., Arima, J., Mukaihara, T., and Hatanaka, T. 2011. Characterization of calcium ion sensitive region for ${\beta}$-mannanase from Streptomyces thermolilacinus. Biochim. Biophys. Acta. 1814, 1127-1133. https://doi.org/10.1016/j.bbapap.2011.04.017
  11. Kumagai, Y., Yamashita, K., Tagami, T., Uraji, M., Wan, K., Okuyama, M., Yao, M., Kimura, A., and Hatanaka, T. 2015. The loop structure of Actinomycete glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J. 282, 4001-4014. https://doi.org/10.1111/febs.13401
  12. Kweun, M.A., Lee, M.S., Choi, J.H., Cho, K.H., and Yoon, K.H. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
  13. Li, R.K., Chen, P., Ng, T.B., Yang, J., Lin, J., Yan, F., and Ye, X.Y. 2015. Highly efficient expression and characterization of a ${\beta}$-mannanase from Bacillus subtilis in Pichia pastoris. Biotechnol. Appl. Biochem. 62, 64-70. https://doi.org/10.1002/bab.1250
  14. Liu, J., Xu, Q., Zhang, J., Zhou, X., Lyu, F., Zhao, P., and Ding, Y. 2015. Preparation, composition analysis and antioxidant activities of konjac oligo-glucomannan. Carbohydr. Polym. 130, 398-404. https://doi.org/10.1016/j.carbpol.2015.05.025
  15. Malgas, S., van Dyk, J.S., and Pletschke, B.I. 2015. A review of the enzymatic hydrolysis of mannans and synergistic interactions between ${\beta}$-mannanase, ${\beta}$-mannosidase and ${\alpha}$-galactosidase. World J. Microbiol. Biotechnol. 31, 1167-1175. https://doi.org/10.1007/s11274-015-1878-2
  16. McCleary, B.V. 1985. The fine structure of carob and guar galactomannans. Carbohydr. Res. 139, 237-260. https://doi.org/10.1016/0008-6215(85)90024-2
  17. Mok, C.H., Lee, J.H., and Kim, B.G. 2013. Effects of exogenous phytase and ${\beta}$-mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Anim. Feed Sci. Technol. 186, 209-213. https://doi.org/10.1016/j.anifeedsci.2013.10.008
  18. Pangsri, P., Piwpankaew, Y., Ingkakul, A., Nitisinprasert, S., and Keawsompong, S. 2015. Characterization of mannanase from Bacillus circulans NT 6.7 and its application in mannooligosaccharides preparation as prebiotic. Springerplus 4, 771. https://doi.org/10.1186/s40064-015-1565-7
  19. Petersen, T.N., Brunak, S., von Heijnem, G., and Nielsen, H. 2011. SignalP4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786. https://doi.org/10.1038/nmeth.1701
  20. Sakakibara, Y., Tsutsumi, K., Nakamura, K., and Yamane, K. 1993. Structural requirements of Bacillus subtilis ${\alpha}$-amylase signal peptide for efficient processing: in vivo pulse-chase experiments with mutant signal peptides. J. Bacteriol. 175, 4203-4212. https://doi.org/10.1128/jb.175.13.4203-4212.1993
  21. Schumann, P., Weiss, N., and Stackebrandt, E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51, 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
  22. Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M., Murata, S., Itoh, E., Yamamoto, T., Sugimura, Y., et al. 2015. Novel ${\beta}$-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J. Biol. Chem. 290, 27914-27927. https://doi.org/10.1074/jbc.M115.661645
  23. Srivastava, P.K. and Kapoor, M. 2014. Cost-effective endo-mannanase from Bacillus sp. CFR1601 and its application in generation of oligosaccharides from guar gum and as detergent additive. Prep. Biochem. Biotechnol. 44, 392-417. https://doi.org/10.1080/10826068.2013.833108
  24. Stoll, D., Stalbrand, H., and Warren, R.A. 1999. Mannan-degrading enzymes from Cellulomonas fimi. Appl. Environ. Microbiol. 65, 2598-2605.
  25. Tjalsma, H. and van Dijl, J.M. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5, 4472-4482. https://doi.org/10.1002/pmic.200402080
  26. Xia, W., Lu, H., Xia, M., Cui, Y., Bai, Y., Qian, L., Shi, P., Luo, H., and Yao, B. 2016. A novel glycoside hydrolase family 113 endo-${\beta}$-1,4-mannanase from Alicyclobacillus sp. strain A4 and insight into the substrate recognition and catalytic mechanism of this family. Appl. Environ. Microbiol. 82, 2718-2727. https://doi.org/10.1128/AEM.04071-15
  27. Yoon, K.H. 2011. Production and properties of hemicellulases by a Cellulosimicrobium sp. isolate. Kor. J. Microbiol. Biotechnol. 39, 252-258.
  28. Yoon, K.H. 2015. Characterization of two ${\beta}$-mannanases from Cellulosimicrobium sp. YB-43. Korean J. Microbiol. 51, 263-270. https://doi.org/10.7845/kjm.2015.5032
  29. Yoon, K.H. and Lim, B.L. 2007. Cloning and strong expression of a Bacillus subtilis WL-3 mannanase gene in B. subtilis. J. Microbiol. Biotechnol. 17, 1688-1694.
  30. Zhang, C., Chen, J.D., and Yang, F.Q. 2014. Konjac glucomannan, a promising polysaccharide for OCDDS. Carbohydr. Polym. 104, 175-181. https://doi.org/10.1016/j.carbpol.2013.12.081
  31. Zhou, H., Yang, Y., Nie, X., Yang, W., and Wu, Y. 2013. Comparison of expression systems for the extracellular production of mannanase Man23 originated from Bacillus subtilis B23. Microb. Cell Fact. 12, 78. https://doi.org/10.1186/1475-2859-12-78
  32. Zou, Y., Lin, J., Bu, X., Jiang, L., Chen, Z., and Ge, X. 2015. Characterization of ${\beta}$-1, 4-mannanase from Bacillus pumilus and heterologous expression in Lactobacillus casei. Wei Sheng Wu Xue Bao 55, 1576-1583.

Cited by

  1. Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성 vol.54, pp.2, 2016, https://doi.org/10.7845/kjm.2018.8019