DOI QR코드

DOI QR Code

Identification of a new marine bacterium Ruegeria sp. 50C-3 isolated from seawater of Uljin in Korea and production of thermostable enzymes

대한민국 울진 연안 해양에서 분리한 해양 미생물 Ruegeria sp. 50C-3의 동정 및 내열성 효소 생산

  • Chi, Won-Jae (Biological and Genetic Resource Assessment Division, National Institute of Biological Resource) ;
  • Kim, Jong-Hee (Department of Food and Nutrition, Seoil University) ;
  • Park, Jae-Seon (Department of Biological Science, Myongji University) ;
  • Hong, Soon-Kwang (Department of Biological Science, Myongji University)
  • 지원재 (국립생물자원관 유용자원분석과) ;
  • 김종희 (서일대학교 식품영양과) ;
  • 박재선 (명지대학교 생명과학정보학과) ;
  • 홍순광 (명지대학교 생명과학정보학과)
  • Received : 2016.08.24
  • Accepted : 2016.09.08
  • Published : 2016.09.30

Abstract

A marine bacterium, designated as strain 50C-3, was isolated from a seawater sample collected from the East Sea of South Korea. The strain is a Gram-negative, aerobic, yellow colored polar-flagellated bacterium that grows at $20-50^{\circ}C$ and pH 5.5-8.5. Optimal growth occurred at $40-50^{\circ}C$, at pH 6.5-7.5, and in the presence of 2% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, the isolate was considered to represent a member of the genus Ruegeria. The result of this analysis showed that strain 50C-3 shared 99.4% and 96.98% sequence similarity with Ruegeria intermedia CC-GIMAT-$2^T$ and Ruegeria lacuscaerulensis ITI-$1157^T$, respectively. Furthermore, strain 50C-3 showed clear differences from related strains in terms of several characteristics such as motility, carbon utilization, enzyme production, etc. The DNA G+C content was 66.7 mol%. Chemotaxonomic analysis indicated ubiquinone-10 (Q-10) as the predominant respiratory quinone. Based on phenotypic, chemotaxonomic, and phylogenetic characteristics, the isolate represents a novel variant of the Ruegeria intermedia CC-GIMAT-$2^T$, for which we named Ruegeria sp. 50C-3 (KCTC23890=DSM25519). Strain 50C-3 did not produce cellulase and agarase, but produced alkaline phosphatase, ${\alpha}$-galactosidase, and ${\beta}$-galactosidase. The three enzymes showed stable activities even at $50^{\circ}C$ and thus regarded as thermostable enzymes. Especially, the ${\beta}$-galactosidase activity enhanced by 1.9 times at $50^{\circ}C$ than that at $37^{\circ}C$, which may be very useful for industrial application.

대한민국 동해안 울진 앞 바닷물로부터 50-C로 명명한 해양 미생물을 분리하였다. 50-C 균주는 그람-음성, 호기성 세균이며, 노란색 집락을 형성하고, 극성편모를 갖는 박테리아이다. 이 균주는 $20-50^{\circ}C$, pH 5.5-8.5 범위에서 자라며, 비교적 고온인 $40-50^{\circ}C$, pH 6.5-7.5, 2% (w/v) NaCl에서 최적 성장을 보인다. 16S rRNA 유전자 서열 분석결과 50C-3 균주는 Ruegeria 속에 속하는 R. intermedia CC-GIMAT-$2^T$, R. lacuscaerulensis ITI-$1157^T$의 16S rRNA 유전자 서열과 각각 99.4%, 96.98% 상동성을 보였다. 그러나 50C-3 균주는 운동성, 탄소이용능력, 효소생산능력 등의 생리학적 특성에서 두 균주와는 명확히 다른 특성을 보였다. 50C-3 균주의 DNA G+C content는 66.7 mol%이고, 주요한 respiratory quinone은 ubiquinone-10 (Q-10)이었다. 이와 같은 형태학적, 생리학적, 유전학적 특성을 비교하여, 50C-3 균주는 R. intermedia CC-GIMAT-$2^T$와 같은 종에 속하는 새로운 변종으로 판단되며 Ruegeria sp. 50C-3으로 명명하였다(KCTC23890 =DSM25519). 50C-3 균주는 cellulase, agarase 활성은 없었지만, alkaline phosphatase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase를 생산하였고 이들 모두 $50^{\circ}C$ 에서도 활성이 좋은 내열성 효소일 것으로 판단되었다. 특히, ${\beta}$-galactosidase의 경우 $37^{\circ}C$에서 보다 $50^{\circ}C$에서의 활성이 1.9배 증가하여 산업적으로 활용성이 클 것으로 예상된다.

Keywords

References

  1. Achbergerova, L. and Nahalka, J. 2014. Degradation of polyphosphates by polyphosphate kinases from Ruegeria pomeroyi. Biotechnol. Lett. 36, 2029-2035. https://doi.org/10.1007/s10529-014-1566-6
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, A., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein data base. Nucleic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Arahal, D.R., Macian, M.C., Garay, E., and Pujalte, M.J. 2005. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Reugeria gelatinovorans as Thalassobius gelatinovorus comb. nov.. Int. J. Syst. Evol. Microbiol. 55, 2371-2376. https://doi.org/10.1099/ijs.0.63842-0
  4. Brummett, A.E., Schnicker, N.J., Crider, A., Todd, J.D., and Dey, M. 2015. Biochemical, kinetic, and spectroscopic characterization of Ruegeria pomeroyi DddW-A mononuclear iron-dependent DMSP lyase. PLoS One 10, e0127288. https://doi.org/10.1371/journal.pone.0127288
  5. Chen, J.M., Ding, L., Sui, X.C., Xia, Y.M., Wan, H.D., and Lu, T. 2016. Production of a bioactive sweetener steviolbioside via specific hydrolyzing ester linkage of stevioside with a ${\beta}$-galactosidase. Food Chem. 196, 155-160. https://doi.org/10.1016/j.foodchem.2015.09.035
  6. Christie-Oleza, J.A., Miotello, G., and Armengaud, J. 2012. Highthroughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade. BMC Genomics 13, 73. https://doi.org/10.1186/1471-2164-13-73
  7. Chun, J., Lee, J.H., Jung, Y.Y., Kim, M.J., Kim, S.I., Kim, B.K., and Lim, Y.W. 2007. ExTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  8. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  9. Huo, Y.Y., Xu, X.W., Li, X., Liu, C., Cui, H.L., Wang, C.S., and Wu, M. 2011. Ruegeria marina sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61, 347-350. https://doi.org/10.1099/ijs.0.022400-0
  10. Kampfer, P., Arun, A.B., Rekha, P.D., Busse, H.J., Young, C.C., and Glaeser, S.P. 2013. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int. J. Syst. Evol. Microbiol. 63, 2538-2544. https://doi.org/10.1099/ijs.0.047910-0
  11. Kim, Y.O., Park, S., Nam, B.H., Jung, Y.T., Kim, D.G., and Yoon, J.H. 2014. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 105, 551-558. https://doi.org/10.1007/s10482-013-0107-y
  12. Kim, Y.O., Park, S., Nam, B.H., Kang, S.J., Hur, Y.B., Lee, S.J., Oh, T.K., and Yoon, J.H. 2012. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int. J. Syst. Evol. Microbiol. 62, 925-930. https://doi.org/10.1099/ijs.0.031609-0
  13. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.
  14. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematic. Methods Microbiol. 19, 161-207.
  15. Lee, J., Whon, T.W., Shin, N.R., Roh, S.W., Kim, J., Park, S.K., Kim, M.S., Shin, K.S., Lee, J.S., Lee, K.C., et al. 2012. Reugeria conchae sp. nov. isolated from the ark claim in the South sea of Korea. Int. J. Syst. Evol. Microbiol. 62, 2851-2857. https://doi.org/10.1099/ijs.0.037283-0
  16. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B.J., and Brinkhoff, T. 2006. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al., 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int. J. Syst. Evol. Microbiol. 56, 1293-1304. https://doi.org/10.1099/ijs.0.63724-0
  17. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159-167. https://doi.org/10.1099/00207713-39-2-159
  18. Muramatsu, Y., Uchino, Y., Kasai, H., Suzuki, K., and Nakagawa, Y. 2007. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int. J. Syst. Evol. Microbiol. 57, 1304-1309. https://doi.org/10.1099/ijs.0.64572-0
  19. Oh, K.H., Jung, Y.T., Oh, T.K., and Yoon, J.H. 2011. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int. J. Syst. Evol. Microbiol. 61, 1182-1188. https://doi.org/10.1099/ijs.0.025999-0
  20. Park, S. and Yoon, J.H. 2012. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 102, 581-589. https://doi.org/10.1007/s10482-012-9753-8
  21. Petursdottir, S.K. and Kristjansson, J.K. 1997. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1, 94-99. https://doi.org/10.1007/s007920050020
  22. Riclea, R., Gleitzmann, J., Bruns, H., Junker, C., Schulz, B., and Dickschat, J.S. 2012. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi. Beilstein J. Org. Chem. 8, 941-950. https://doi.org/10.3762/bjoc.8.106
  23. Ruger, H.J. and Hofle, M.G. 1992. Marine star-shaped-aggregate forming bacteria: Agrobacterium altanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agarobacterium gelatinovurum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom., rev. Int. J. Syst. Evol. Microbiol. 42, 133-143.
  24. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  25. Sangwan, V., Tomar, S.K., Ali, B., Singh, R.R., and Singh, A.K. 2015. Production of ${\beta}$-galactosidase from Streptococcus thermophilus for galactooligosaccharides synthesis. J. Food Sci. Technol. 52, 4206-4215. https://doi.org/10.1007/s13197-014-1486-4
  26. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Inc., Newark, DE, USA.
  27. Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standard. Microbiol. Today 33, 152-155.
  28. Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic Note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849. https://doi.org/10.1099/00207713-44-4-846
  29. Temuujin, U., Chi, W.J., Park, J.S., Chang, Y.K., Song, J.Y., and Hong, S.K. 2012. Identification and characterization of a novel ${\beta}$-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium. J. Microbiol. 50, 1034-1040. https://doi.org/10.1007/s12275-012-2478-6
  30. Thomson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  31. Uchino, Y., Hirata, A., Yokota, A., and Sugiyama, J. 1998. Reclassification of marine Agrobacterium speices: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregate sp. nov., nom. Rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Reugeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. Rev. J. Gen. Appl. Microbiol. 44, 201-210. https://doi.org/10.2323/jgam.44.201
  32. Vandecandelaere, I., Nercessian, O., Segaert, E., Achouak, W., Faimali, M., and Vandamme, P. 2008. Ruegeria Scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int. J. Syst. Evol. Microbiol. 58, 2726-2733. https://doi.org/10.1099/ijs.0.65843-0
  33. Yi, H., Lim, Y.W., and Chun, J. 2007. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int. J. Syst. Evol. Microbiol. 57, 815-819. https://doi.org/10.1099/ijs.0.64568-0
  34. Zhang, J., Lu, L., Lu, L., Zhao, Y., Kang, L., Pang, X., Liu, J., Jiang, T., Xiao, M., and Ma, B. 2016. Galactosylation of steroidal saponins by ${\beta}$-galactosidase from Lactobacillus bulgaricus L3. Glycoconj. J. 33, 53-62. https://doi.org/10.1007/s10719-015-9632-4
  35. Zhou, D., Yin, D., Xiao, F., and Hao, J. 2015. Expressions of senescence-associated ${\beta}$-galactosidase and senescence marker protein-30 are associated with lens epithelial cell apoptosis. Med. Sci. Monit. 21, 3728-3735. https://doi.org/10.12659/MSM.895596