DOI QR코드

DOI QR Code

Control of histamine-forming bacteria by probiotic lactic acid bacteria isolated from fish intestine

생선 내장으로부터 분리된 프로바이오틱 유산균에 의한 히스타민 생산균의 제어

  • Lim, Eun-Seo (Department of Food Science & Nutrition, Tongmyong University) ;
  • Lee, Nahm-Gull (Department of Food Science & Nutrition, Tongmyong University)
  • 임은서 (동명대학교 식품영양학과) ;
  • 이남걸 (동명대학교 식품영양학과)
  • Received : 2016.07.18
  • Accepted : 2016.09.13
  • Published : 2016.09.30

Abstract

In this study, we examined in vitro the potential probiotic properties of lactic acid bacteria (LAB) obtained from the fish intestine and their ability to degrade histamine through the production of diamine oxidase (DAO) enzymes and bacteriocin. Among 97 LAB strains isolated from the intestine of croaker, flatfish, pollack, and rockfish, CIL08, CIL16, FIL20, FIL31, PIL45, PIL49, PIL52, and RIL60 isolates exhibited excellent survival rates under simulated gastrointestinal tract conditions, high adhesion ability to HT-29 epithelial cells, and resistance to the antibiotics such as amoxicillin, ampicillin, erythromycin, penicillin G, streptomycin, tetracycline, or vancomycin. In addition, these strains did not produce histamine in decarboxylating broth containing histidine. In particular, 4 strains (CIL08, FIL20, PIL52, and RIL60) that may produce DAO were significantly able to degrade histamine. The bacteriocins produced by FIL20, FIL31, and PIL52 LAB inhibited the growth and histamine production of Enterococcus aerogenes CIH05, Serratia marcescens CIH09, Enterococcus faecalis FIH11, Pediococcus halophilus FIH15, Lactobacillus sakei PIH16, Enterococcus faecium PIH19, Leuconostoc mesenteroides RIH25, or Aeromonas hydrophilia RIH28. Histamine-producing strains isolated from fish intestine were found to reduce histamine accumulation during co-culture with CIL08, FIL20, PIL52, and RIL60 LAB showing histamine degradation or bacteriocin production ability. The probiotic strains preventing histamine formation were identified as Pediococcus pentosaceus CIL08, Lactobacillus plantarum FIL20, Lactobacillus paracasei FIL31, Lactobacillus sakei PIL52, and Leuconostoc mesenteroides RIL60 with high similarity based on 16S rRNA gene sequencing.

본 연구에서는 생선 내장으로부터 분리된 유산균의 프로바이오틱 특성과 아민 산화효소(diamine oxidase, DAO) 및 박테리오신 생산을 통한 히스타민 분해능을 조사하였다. 조기, 가자미, 명태 및 우럭 내장으로부터 분리된 총 97종의 유산균 중에서 CIL08, CIL16, FIL20, FIL31, PIL45, PIL49, PIL52 및 RIL60 균주는 인공 소화액에 대한 저항성이 강하고, HT-29 상피세포에 대해서도 높은 부착력을 보였으며, 항생제(amoxicillin, ampicillin, erythromycin, penicillin G, streptomycin, tetracycline 및 vancomycin)에 대한 내성도 강한 것으로 나타났다. 게다가 이들 균주들은 히스티딘이 함유된 탈카르복시화 액체배지 내에서 히스타민을 생산하지 않았다. 특히 DAO를 생산하는 것으로 추정되는 CIL08, FIL20, PIL52 및 RIL60 등의 4균주는 히스타민 분해능이 유의하게 높았다. FIL20, FIL31 및 PIL52 유산균이 생산한 박테리오신에 의해선 Enterococcus aerogenes CIH05, Serratia marcescens CIH09, Enterococcus faecalis FIH11, Pediococcus halophilus FIH15, Lactobacillus sakei PIH16, Enterococcus faecium PIH19, Leuconostoc mesenteroides RIH25 혹은 Aeromonas hydrophilia RIH28의 증식과 히스타민 생성량이 유의하게 감소되었다. 또한 생선 내장에서 분리된 히스타민 생성균과 히스타민 분해능 혹은 박테리오신 생산능을 가진 CIL08, FIL20, PIL52 및 RIL60 유산균과 혼합 배양에 의해 히스타민 축적량이 감소되었다. 히스타민 생성을 억제하는 프로바이오틱 유산균의 배양학적 특성과 16S rRNA 염기서열 분석을 통해 Pediococcus pentosaceus CIL08, Lactobacillus plantarum FIL20, Lactobacillus paracasei FIL31, Lactobacillus sakei PIL52 및 Leuconostoc mesenteroides RIL60으로 동정되었다.

Keywords

References

  1. Allameh, S.K., Daud, H., Yusoff, F.M., Saad, C.R., and Ideris, A. 2012. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa Striatus). Afr. J. Biotechnol. 11, 3810-3816.
  2. Bajpai, V.K., Han, J.H., Nam, G.J., Majumder, R., Park, C.S., Lim, J.H., Paek, W.K., Rather, I.A., and Park, Y.H. 2016. Characterization and pharmacological potential of Lactobacillus sakei 111 isolated from fresh water fish Zacco koreanus. DARU J. Pharm. Sci. 24, 1-12. https://doi.org/10.1186/s40199-015-0139-0
  3. Balcazar, J.L., Vendrell, D., De Blas, I., and Ruiz-Zarzuela, I. 2008. Characterization of probiotic properties of lactic acid bacteria from intestinal microbiota of fish. Aquacuture 278, 188-191. https://doi.org/10.1016/j.aquaculture.2008.03.014
  4. Bover-Cid, S. and Holzapfel, W.H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 52, 33-41.
  5. Chahad, O.B., Bour, M.E., Calo-Mata, P., Boudabous, A., and Barros-Velazquez, J. 2012. Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products. Res. Microbiol. 163, 44-54. https://doi.org/10.1016/j.resmic.2011.08.005
  6. Chen, H.C., Kung, H.F., Chen, W.C., Lin W.F., Hwang, D.F., Lee Y.C., and Tsai, Y.H. 2008. Determination of histamine and histamine-forming bacteria in tuna dumpling implicated in a food-borne poisoning. Food Chem. 106, 612-618. https://doi.org/10.1016/j.foodchem.2007.06.020
  7. Cho, G.S., Do, H.K., Bae, C.Y., Cho, G.S., Whang, C.W., and Shin, H.K. 2006. Candidate of probiotic bacteria isolated from several jeotgals: Korean traditional fermented seafoods. J. Food Sci. Nutr. 11, 140-145.
  8. Dapkevicius, M.L.N.E., Nout, M.J.R., Rombouts, F.M., Houben, J.H., and Wymenga, W. 2000. Biogenic amine formation and degradation by potential fish silage starter microorganisms. Int. J. Food Microbiol. 57, 107-114. https://doi.org/10.1016/S0168-1605(00)00238-5
  9. Eerola, S., Hinkkanen, R., Lindfors, E., and Hirvi, T. 1993. Liquid chromatographic determination of biogenic amines in dry sausages. J. Assoc. Off. Anal. Chem. Int. 75, 575-577.
  10. Garcia-Ruiz, A., Gonzalez-Rompinelli, E.M., Bartolome, B., and Moreno-Arribas, M.V. 2011. Potential of wine-associated lactic acid bacteria to degrade biogenic amines. Int. J. Food Microbiol. 148, 115-120. https://doi.org/10.1016/j.ijfoodmicro.2011.05.009
  11. Ghanbari, M., Jami, M., Domig, K.J., and Kneifel, W. 2009. Seafood biopreservation by lactic acid bacteria-A review. LWT-Food Sci. Technol. 54, 315-324.
  12. Ghanbari, M., Rezaei, M., Jami, M., and Nazari, R.M. 2013. Isolation and characterization of Lactobacillus species from intestinal contents of beluga (Huso huso) and Persian sturgeon (Acipenser persicus). Iran. J. Vet. Res. 10, 152-157.
  13. Grimoud, J., Durand, H., Courtin, C., Monsan, P., Ouarne, F., Theodorou, V., and Roques, C. 2010. In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe 16, 493-500. https://doi.org/10.1016/j.anaerobe.2010.07.005
  14. Gomez-Sala, B., Munoz-Atienza, E., Sanchez, J., Basanta, A., Herranz, C., Hernandez, P.E., and Cintas, L.M. 2015. Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products. Eur. Food Res. Technol. 241, 341-356. https://doi.org/10.1007/s00217-015-2465-3
  15. Holo, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887. https://doi.org/10.1128/jb.173.12.3879-3887.1991
  16. Joosten, H.M. and Nunez, M. 1996. Prevention of histamine formation in cheese by bacteriocin-producing lactic acid bacteria. Appl. Environ. Microbiol. 62, 1178-1181.
  17. Kim, M.W. and Kim, Y.M. 2006. Isolation and identification of histamine degrading bacteria from Kwamegi. Kor. J. Life Sci. 16, 120-125. https://doi.org/10.5352/JLS.2006.16.1.120
  18. Kim, M.K., Mah, J.H., and Hwang, H.J. 2009. Biogenic amine formation and bacteria contribution in fish, squid and shellfish. Food Chem. 116, 87-95. https://doi.org/10.1016/j.foodchem.2009.02.010
  19. Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-86. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x
  20. Kongkiattikajorn, J. 2015. Potential of starter culture to reduce biogenic amines accumulation in som-fug, a Thai traditional fermented fish sausage. J. Ethn. Foods 2, 186-194. https://doi.org/10.1016/j.jef.2015.11.005
  21. Lakshamanan, R., Shakila, R.J., and Jeyasekaran, G. 2002. Survival of amine-forming bacteria during the ice storage of fish and shrimp. Food Microbiol. 19, 617-625. https://doi.org/10.1006/fmic.2002.0481
  22. Lee, Y.C., Lin, C.S., Liu, F.L., Huang, T.C., and Tsai, Y.H. 2015. Degradation of histamine by Bacillus polymyxa isolated from salted fish products. J. Food Drug Anal. 23, 836-844. https://doi.org/10.1016/j.jfda.2015.02.003
  23. Leuschner, R.G., Heidel, M., and Hammes, W.P. 1998. Histamine and tyramine degradation by food fermenting microorganisms. Int. J. Food Microbiol. 39, 1-10. https://doi.org/10.1016/S0168-1605(97)00109-8
  24. Linares, D.M., Martin, M.C., Ladero, V., Alvarez, M.A., and Fernandez, M. 2011. Biogenic amines in dairy products. Crit. Rev. Food Sci. 51, 691-703. https://doi.org/10.1080/10408398.2011.582813
  25. Mah, J.H., Ahn, J.B., Park, J.H., Sung, H.C., and Hwang, H.J. 2003. Characterization of biogenic amine-producing microorganisms isolated from Myeolchi-Jeot, Korean salted and fermented anchovy. J. Microbiol. Biotechnol. 13, 692-699.
  26. Mah, J.H. and Hwang, H.J. 2009. Inhibition of biogenic amine formation in a salted and fermented anchovy by Staphylococcus xylosus as a protective culture. Food Control 114, 168-173.
  27. Maijala, R.L., Erola, S.H., Aho, M.A., and Hirn, J.A. 1993. The effect of GDL-induced pH decrease on the formation of biogenic amines in meat. J. Food Prot. 50, 125-129.
  28. Middlebrooks, B.L., Toom, P.M., Douglas, W.L., Harrison, R.E., and Mcdowell, S. 1988. Effects of storage time and temperature on the microflora and amine development in Spanish mackerel (Scoberomorus maculatus). J. Food Sci. 53, 1024-1029. https://doi.org/10.1111/j.1365-2621.1988.tb13522.x
  29. Migaw, S., Ghrairi, T., Belguesmia, Y., Choiset, Y., Berjeaud, J.M., Chobert, J.M., Hani, K., and Haertle, T. 2014. Diverstiy of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera. World J. Microbiol. Biotechnol. 30, 1207-1217. https://doi.org/10.1007/s11274-013-1535-6
  30. Morii, H., Cann, D.C., and Taylor, L.Y. 1988. Histamine formation by luminous bacteria in mackerel stored at low temperatures. B. Jpn. Soc. Sci. Fish. 54, 299-305. https://doi.org/10.2331/suisan.54.299
  31. Murooka, Y., Doi, N., and Harada, T. 1979. Distribution of membrane bound monoamine oxidase in bacteria. Appl. Environ. Microbiol. 38, 565-569.
  32. Musikasang, H., Sohsomboon, N., Tani, A., and Maneerat, S. 2012. Bacteriocin-producing lactic acid bacteria as a probiotic potential from Thai indigenous chickens. Czech J. Anim. Sci. 57, 137-149. https://doi.org/10.17221/5568-CJAS
  33. Naila, A., Flint, S., Fletcher, G., Bremer, P., and Meerdink, G. 2010. Control of biogenic amines in food-existing and emerging approaches. J. Food Sci. 75, R139-R150. https://doi.org/10.1111/j.1750-3841.2010.01774.x
  34. Nirunya, B., Suphitchaya, C., and Tipparat, H. 2008. Screening of lactic acid bacteria from gastrointestinal tracts of marine fish for their potential use as probiotics. Songklanakarin J. Sci. Technol. 30, 141-147.
  35. Nugrahani, A., Anik, H., and Hariati, M. 2016. Characterization of bacteriocin Lactobacillus casei on histamine-forming bacteria. J. Life Sci. Biomed. 6, 15-21.
  36. Osmanagaoglu, O., Kiran, F., and Ataoglu, H. 2010. Evaluation of in vitro probiotic potential of Pediococcus pentosaceus OZF isolated from human breast milk. Probiotics Antimicrob. Proteins 2, 162-174. https://doi.org/10.1007/s12602-010-9050-7
  37. Ozogul, F. 2011. Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int. J. Food Sci. Technol. 46, 478-484. https://doi.org/10.1111/j.1365-2621.2010.02511.x
  38. Priyadarshani, W.M.D. and Rakshit, S.K. 2011. Screening selected strains of probiotic lactic acid bacteria for their ability to produce biogenic amines (histamine and tyramine). Int. J. Food Sci. Technol. 46, 2062-2069. https://doi.org/10.1111/j.1365-2621.2011.02717.x
  39. Santos, M.H.S. 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29, 213-231. https://doi.org/10.1016/0168-1605(95)00032-1
  40. Shakila, R.J., Vasundhara, T.S., and Rao, D.V. 1996. Inhibitory effect of spices on in vitro histamine production and histidine decarboxylase activity of Morganella morganii and on the biogenic amine formation in mackerel stored at 30 degrees C. Z. Lebensm. Unters. Forsch. 203, 71-76. https://doi.org/10.1007/BF01267773
  41. Shalaby, A.R. 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29, 675-690. https://doi.org/10.1016/S0963-9969(96)00066-X
  42. Straub, B.W., Kicherer, M., Schilcher, S.M., and Hammes, W.P. 1995. The formation of biogenic amines by fermentation organisms. Z. Lebensm. Unters. Forsch. 201, 79-82. https://doi.org/10.1007/BF01193205
  43. Tabanelli, G., Montanari, C., Bargossi, E., Lanciotti, R., Gatto, V., Felis, G., Torriani, S., and Gardini, F. 2014. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci. Int. J. Food Microbiol. 190, 14-23. https://doi.org/10.1016/j.ijfoodmicro.2014.08.023
  44. Tajabadi, N., Mardan, M., Saari, N., Mustafa, S., Bahreini, R., and Manap, M.Y.A. 2013. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Braz. J. Microbiol. 44, 717-722. https://doi.org/10.1590/S1517-83822013000300008
  45. Ten Brink, B., Damink, C., Joosten, H.M.L., and Veld, J.H.J. 1990. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 11, 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  46. Thiruneelakandan, G., Sesuraj, V.J., Babu, V., Senthikumar, V., Kathiresan, K., Sivakami, R., and Anthoni, S.A. 2013. Efficacy of preserving sea foods using marine Lactobacillus. Sci. Technol. Arts Res. J. 2, 10-13. https://doi.org/10.4314/star.v2i1.98836
  47. Todorov, S.D., Furtado, D.N., Saad, S.M.I., Tome, E., and Franco, B.D.G.M. 2011. Potential beneficial properties of bacteriocinproducing lactic acid bacteria isolated from smoked salmon. J. Appl. Microbiol. 110, 971-986. https://doi.org/10.1111/j.1365-2672.2011.04950.x
  48. Visciano, P., Schirone, M., Tofalo, R., and Suzzi, G. 2012. Biogenic amines in raw and processed seafood. Front. Microbiol. 3, 1-10.
  49. Yongjin, H., Wenshui, X., and Xiaoyong, L. 2007. Changes in biogenic amines in fermented silver carp sausages inoculated with mixed starter cultures. Food Chem. 104, 188-195. https://doi.org/10.1016/j.foodchem.2006.11.023
  50. Zaman, M.Z., Bakar, F.A., Selamat, J., and Bakar, J. 2010. Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech. J. Food Sci. 28, 440-449. https://doi.org/10.17221/312/2009-CJFS
  51. Zaman, M.Z., Bakar, F.A., Jinap, S., and Bakar, J. 2011. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. Int. J. Food Microbiol. 145, 84-91. https://doi.org/10.1016/j.ijfoodmicro.2010.11.031

Cited by

  1. 프로바이오틱 유산균의 바이오제닉 아민 분해능에 영향을 미치는 배양 조건 vol.53, pp.4, 2016, https://doi.org/10.7845/kjm.2017.7068
  2. 렌넷 커드 내 히스타민 생성에 관한 프로바이오틱 유산균이 생산한 항균 물질의 영향 vol.54, pp.2, 2016, https://doi.org/10.7845/kjm.2018.7093
  3. 전통 발효 된장으로부터 분리된 바이오제닉 아민 생성 바실러스균에 대한 유산균의 항균 활성 vol.54, pp.4, 2018, https://doi.org/10.7845/kjm.2018.8058
  4. 수산부산물 발효어분이 넙치(Paralichthys olivaceu)의 간 및 근육에 미치는 영향에 관한 조직학적 연구 vol.29, pp.11, 2016, https://doi.org/10.5352/jls.2019.29.11.1235