DOI QR코드

DOI QR Code

Association Analysis between Genes' Variants for Regulating Mitochondrial Dynamics and Fasting Blood Glucose Level

  • Jung, Dongju (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University) ;
  • Jin, Hyun-Seok (Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University)
  • Received : 2016.09.04
  • Accepted : 2016.09.30
  • Published : 2016.09.30

Abstract

Maintenance of fasting blood glucose levels is important for glucose homeostasis. Disruption of feedback mechanisms are a major reason for elevations of glucose level in blood, which is a risk factor for type 2 diabetes mellitus that is mainly caused by malfunction of pancreatic beta-cell and insulin. The fasting blood glucose level has been known to be influenced by genetic and environmental factors. Mitochondria have many functions for cell survival and death: glucose metabolism, fatty acid oxidation, ATP generation, reactive oxygen species (ROS) metabolism, calcium handling, and apoptosis regulation. In addition to these functions, mitochondria change their morphology dynamically in response to multiple signals resulting in fusion and fission. In this study, we aimed to examine association between fasting blood glucose levels and variants of the genes that are reported to have functions in mitochondrial dynamics, fusion and fission, using a cohort study. A total 416 SNPs from 36 mitochondrial dynamics genes were selected to analyze the quantitative association with fasting glucose level. Among the 416 SNPs, 4 SNPs of PRKACB, 13 SNPs of PPP3CA, 6 SNPs of PARK2, and 3 SNPs of GDAP1 were significantly associated. In this study, we were able to confirm an association of mitochondrial dynamics genes with glucose levels. To our knowledge our study is the first to identify specific SNPs related to fasting blood glucose level.

Keywords

References

  1. Benard G, Karbowski M. Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol. 2009. 20: 365-374. https://doi.org/10.1016/j.semcdb.2008.12.012
  2. Cerveny KL, Tamura Y, Zhang Z, Jensen RE, Sesaki H. Regulation of mitochondrial fusion and division. Trends Cell Biol. 2007. 17: 563-569. https://doi.org/10.1016/j.tcb.2007.08.006
  3. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006. 22: 79-99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638
  4. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, Kim DJ, Park M, Cha SH, Kim JW, Han BG, Min H, Ahn Y, Park MS, Han HR, Jang HY, Cho EY, Lee JE, Cho NH, Shin C, Park T, Park JW, Lee JK, Cardon L, Clarke G, McCarthy MI, Lee JY, Lee JK, Oh B, Kim HL. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009. 41: 527-534. https://doi.org/10.1038/ng.357
  5. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007. 316: 1331-1336. https://doi.org/10.1126/science.1142358
  6. Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS, Atwood LD. Genome-wide association to body mass index and waist circumference: The Framingham heart study 100K project. BMC Med Genet. 2007. 8 Suppl 1: S18. https://doi.org/10.1186/1471-2350-8-S1-S18
  7. Gamm DM, Baude EJ, Uhler MD. The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo. J Biol Chem. 1996. 271: 15736-15742. https://doi.org/10.1074/jbc.271.26.15736
  8. Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and parkinson disease: A parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci. 2015. 1350: 37-47. https://doi.org/10.1111/nyas.12820
  9. Hiura Y, Tabara Y, Kokubo Y, Okamura T, Miki T, Tomoike H, Iwai N. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J. 2010. 74: 2353-2359. https://doi.org/10.1253/circj.CJ-10-0353
  10. Hoppins S, Lackner L, Nunnari J. The machines that divide and fuse mitochondria. Annu Rev Biochem. 2007. 76: 751-780. https://doi.org/10.1146/annurev.biochem.76.071905.090048
  11. Huber N, Guimaraes S, Schrader M, Suter U, Niemann A. Charcot-Marie-tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep. 2013. 14: 545-552. https://doi.org/10.1038/embor.2013.56
  12. In SK, Hyun TK, Kim E-J, Lee EJ. A comparative study of the concentration of salivary and blood glucose in normal and diabetic subjects. Journal of Experimental & Biomedical Sciences. 2013. 19: 105-111.
  13. Jin HS, Kim J, Lee SJ, Kim K, Go MJ, Lee JY, Lee HJ, Song J, Jeon BT, Roh GS, Kim SJ, Kim BY, Hong KW, Yoo YH, Oh B, Kang Y, Jeong SY. The PARK2 gene is involved in the maintenance of pancreatic beta-cell functions related to insulin production and secretion. Mol Cell Endocrinol. 2014. 382: 178-189. https://doi.org/10.1016/j.mce.2013.09.031
  14. Jin HJ, Kim J, Kyung TK, Ho JS. Application of an efficient method for isolation of mitochondria from biological samples. Biomedical Science Letters. 2014. 20: 180-184. https://doi.org/10.15616/BSL.2014.20.3.180
  15. Kabzinska D, Kotruchow K, Cegielska J, Hausmanowa-Petrusewicz I, Kochanski A. A severe recessive and a mild dominant form of Charcot-Marie-tooth disease associated with a newly identified Glu222Lys GDAP1 gene mutation. Acta Biochim Pol. 2014. 61: 739-744.
  16. Mason CC, Hanson RL, Knowler WC. Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes. 2007. 56: 2054-2061. https://doi.org/10.2337/db07-0053
  17. McBride HM, Neuspiel M, Wasiak S. Mitochondria: More than just a powerhouse. Curr Biol. 2006. 16: R551-560. https://doi.org/10.1016/j.cub.2006.06.054
  18. Ober C, Nord AS, Thompson EE, Pan L, Tan Z, Cusanovich D, Sun Y, Nicolae R, Edelstein C, Schneider DH, Billstrand C, Pfaffinger D, Phillips N, Anderson RL, Philips B, Rajagopalan R, Hatsukami TS, Rieder MJ, Heagerty PJ, Nickerson DA, Abney M, Marcovina S, Jarvik GP, Scanu AM, Nicolae DL. Genome-wide association study of plasma lipoprotein (a) levels identifies multiple genes on chromosome 6q. J Lipid Res. 2009. 50: 798-806. https://doi.org/10.1194/jlr.M800515-JLR200
  19. Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta. 2013. 1833: 1256-1268. https://doi.org/10.1016/j.bbamcr.2013.02.002
  20. Paternoster L, Evans DM, Nohr EA, Holst C, Gaborieau V, Brennan P, Gjesing AP, Grarup N, Witte DR, Jorgensen T, Linneberg A, Lauritzen T, Sandbaek A, Hansen T, Pedersen O, Elliott KS, Kemp JP, St Pourcain B, McMahon G, Zelenika D, Hager J, Lathrop M, Timpson NJ, Smith GD, Sorensen TI. Genome-wide population-based association study of extremely overweight young adults--the GOYA study. PLoS One. 2011. 6: e24303. https://doi.org/10.1371/journal.pone.0024303
  21. Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O'Connell JR, Shuldiner AR. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 2008. 322: 1702-1705. https://doi.org/10.1126/science.1161524
  22. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, Loos RJ, Manning AK, Jackson AU, Aulchenko Y, Potter SC, Erdos MR, Sanna S, Hottenga JJ, Wheeler E, Kaakinen M, Lyssenko V, Chen WM, Ahmadi K, Beckmann JS, Bergman RN, Bochud M, Bonnycastle LL, Buchanan TA, Cao A, Cervino A, Coin L, Collins FS, Crisponi L, de Geus EJ, Dehghan A, Deloukas P, Doney AS, Elliott P, Freimer N, Gateva V, Herder C, Hofman A, Hughes TE, Hunt S, Illig T, Inouye M, Isomaa B, Johnson T, Kong A, Krestyaninova M, Kuusisto J, Laakso M, Lim N, Lindblad U, Lindgren CM, McCann OT, Mohlke KL, Morris AD, Naitza S, Orru M, Palmer CN, Pouta A, Randall J, Rathmann W, Saramies J, Scheet P, Scott LJ, Scuteri A, Sharp S, Sijbrands E, Smit JH, Song K, Steinthorsdottir V, Stringham HM, Tuomi T, Tuomilehto J, Uitterlinden AG, Voight BF, Waterworth D, Wichmann HE, Willemsen G, Witteman JC, Yuan X, Zhao JH, Zeggini E, Schlessinger D, Sandhu M, Boomsma DI, Uda M, Spector TD, Penninx BW, Altshuler D, Vollenweider P, Jarvelin MR, Lakatta E, Waeber G, Fox CS, Peltonen L, Groop LC, Mooser V, Cupples LA, Thorsteinsdottir U, Boehnke M, Barroso I, Van Duijn C, Dupuis J, Watanabe RM, Stefansson K, McCarthy MI, Wareham NJ, Meigs JB, Abecasis GR. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009. 41: 77-81. https://doi.org/10.1038/ng.290
  23. Rabbee N, Speed TP. A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics. 2006. 22: 7-12. https://doi.org/10.1093/bioinformatics/bti741
  24. Watanabe RM, Valle T, Hauser ER, Ghosh S, Eriksson J, Kohtamaki K, Ehnholm C, Tuomilehto J, Collins FS, Bergman RN, Boehnke M. Familiality of quantitative metabolic traits in finnish families with non-insulin-dependent diabetes mellitus. Finland-United States investigation of NIDDM genetics (FUSION) study investigators. Hum Hered. 1999. 49: 159-168. https://doi.org/10.1159/000022865