DOI QR코드

DOI QR Code

발룬 펄라이트를 사용한 무기단열재의 특성 연구

A Characteristic Study of Inorganic Insulation Using Balloon Pearlite

  • Jeon, Chanki (Department of Urban Construction Engineering,, Incheon National University) ;
  • Park, Jongpil (Urban Construction Engineering, Incheon National University) ;
  • Chung, Hoon (Chemistry Engineering, SunHan M&T) ;
  • Lee, Jaeseong (Urban Construction Engineering, Incheon National University) ;
  • Shim, jaeyeong (Urban Construction Engineering, Incheon National University)
  • 투고 : 2016.09.14
  • 심사 : 2016.09.27
  • 발행 : 2016.09.30

초록

건축물에서 단열재는 매우 중요하다. 건축물에 사용하는 단열재는 재료에 따라 유기단열재와 무기단열재로 크게 나누는데 스티로폼이나 우레탄으로 만들어진 유기단열재는 화재에 매우 취약하다. 반면 펄라이트 무기단열재는 불연재이나 습기에 매우 취약하여 사용범위가 제한적이다. 본 연구에서는 단열성능이 보드의 두께가 50mm 이내의 샘플에서 열전도율과 흡수율은 각각 0.05W/mk, 3.0% 이하, 휨강도와 발수율은 각각 $25N/cm^2$, 98% 이상인 무기단열재를 개발하고 열전도 특성을 평가하였다.

The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulations material which are made of styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral-wool and glass-wool are very week with moisture while they are non-flammable so that its usage is very limited. In this study, inorganic heat insulating material developed and the properties of thermal conductivity evaluated. The thermal conductivity and the water absorption of the sample in less than 50mm thickness of the board is less than 0.05W/mk, 3.0%. Bending strength and the water repellency is more than $25N/cm^2$, 98%.

키워드

참고문헌

  1. E. W. Lemon, R. T. Jacobsen (2004), "Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon and Air.", International Journal of Thermophysics, Vol. 25, No. 1, pp.21-69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3
  2. Park, J. M., , Kim, D. H , Suh, D. J. (2012), "Recent Research Trends for Green Building Thermal Insulation Materials" Vol. 18, No. 1, pp.14-21 https://doi.org/10.7464/ksct.2012.18.1.014
  3. Song, J. Y. et al. (2011), "A Study on the Combustion Characteristic of Building Materials" Journal of the 24 KOSOS, Vol. 26, No. 3, pp.23-28
  4. Lee, H. P., Park, Y. J. (2011), "A study on Combustion Gas Toxicity of Architecture Surface Material" pp.441-446
  5. Yoo. S. H., Kim, T. H. (2013), "A Study on the Effect of Water Absorption on the Thermal Conductivity of Insulation Materials", Korean Journal of Air-Condition and Refrigeration Engineering, Vol. 35, No. 3, pp.119-125
  6. K. Kadoya, et al. (1995), "Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase", J. Phys. Chem. Ref. Data, Vol. 14, No. 4, pp.947-970 https://doi.org/10.1063/1.555744
  7. J. V. Sengers and J. T. R. Watson. (1986), "Improved international formulations for the viscosity and thermal conductivity of water substance", J. Phys. Chem. Ref.
  8. Anne-Marie KIETZIG, Savvas G. HATZIKIRIAKOS, Peter ENGLEZOS, (2010), "Ice friction: the effect of thermal conductivity", Journal of Glaciology, Vol. 56, No. 197, pp.473-479 https://doi.org/10.3189/002214310792447752
  9. Langlais. C., Hyrien. M and Klarsfled. S. (1982), "Moisture migration in fibrous insulating material under the influence of a thermal gradient and its effect on thermal resistance", ASTM STP, Vol. 779, pp.191-206