
International Journal of Advanced Culture Technology Vol.4 No.3 13-19 (2016)  

http://dx.doi.org/10.17703/IJACT.2016.4.3.13   

 

 
 

Performance Evaluation of Node.js for Web Service Gateway in IoT Remote 

Monitoring Applications 

 

Lionel Nkenyereye, Jong-Wook Jang
* 

 

Department of Computer Engineering, Dong-Eui University, Busan, Korea 

Lionelnk82@gmail.com, jwjang@deu.ac.kr
*
 

 

Abstract 

 The growth of mobile devices in Internet of Things (IoT) leads to a number of remote and controlling 

system related IoT applications. For instance, home automation controlling system uses client system such web 

apps on smartphone or web service to access the home server by sending control commands. The home server 

receives the command, then controls for instance the light system. The web service gateway responsible for 

handling clients’ requests attests an internet latency when an increasing number of end users requests submit 

toward it. Therefore, this web service gateway fails to detect several commands, slows down predefined actions 

which should be performed without human intervention. In this paper, we investigate the performance of a web 

server-side platgorm based event-driven, non-blocking approach called Node.js against traditional 

thread-based server side approach to handle a large number of client requests simultaneously for remote and 

controlling system in IoT remote monitoring applications. The Node.JS is 40% faster than the traditional web 

server side features thread-based approach. The use of Node.js server-side handles a large number of clients’ 

requests, then therefore, reduces delay in performing predefined actions automatically in IoT environment. 

 

Keywords: web service gateway, Event-driven approach, Node.js, remote monitoring, concurrent programming, 

Internet of Things, performance. 

 
1. Introduction 

Traditionally, the remote and controlling system use client server architecture such as web-based mobile 

application or web service gateway to handle commands to control devices in (Internet of Things)IoT 

environment [1]. As the number of clients‟ requests increases in simultaneously manner, the web service 

gateway to handle those requests encounters limitations for performing them successfully, and therefore, 

slows down predefined actions that take automatically without the help of humans.  

The architecture of web server-side and its scripting approach on the gateway implementing web service 

must inherit features that allow to respond to an increasing number of network requests from the end-users. 

However, web service gateway based on the thread-based approach might perform inefficiently as the 

IJACT 16-3-3 

Manuscript Received: Jul. 4, 2016 / Revised: Jul. 15, 2016 / Accepted: Jul. 28, 2016  

Corresponding Author: jwjang@deu.ac.kr  

Tel: +82-51-890-1709, Fax: +82-51-890-1724 

Department of Computer Engineering, Dong-Eui University 



14                                      International Journal of Advanced Culture Technology Vol.4 No.3 13-19 (2016) 
 

number of incoming network requests increases. That is the reason that many industry such as eBay, 

LinkedIn have started to adopt event-driven programming as an option to respond to a large number of 

concurrent requests and achieve scalability more operationally [2]. 

The main contribution of this work is to investigate the performance of Client-Server Architecture that 

includes backend server, web programming framework and database. The architecture implements a web 

service gateway which is able to support a large and increasing number of concurrent clients‟ requests. The 

performance metrics are throughput, response time and error rate to compare web applications developed 

using JavaScript and JavaServelet. 

 

2. Event-driven server side concept features Node.js platform 

The architecture of the web server features event-driven improve scalability more efficiency for handling 

several requests simultaneously .The aim of adopting event-driven server-side architecture is to prevent 

blocking and long running requests which may increase cost, consequently let out users to several unlike 

convenience use of their smart phone applications. Certainly, the adoption of an event-driven web 

architecture to build web-based mobile application would enhance the desire of end users that use remote 

monitoring applications based on IoT to safely access their smart phones applications at the same time 

enable commands controlling connected devices on mobile application running in background such remotely 

switch power on/off, get information of device‟s power consumption and ambient temperature, and 

eventually control the nearby devices using the integrated IR-emitter[1]. 

The Node.js is a platform for building event-driven networking programs. It is a version of Google's V8 

JavaScript. It runs in a single thread that enables it to serve many clients concurrently. The Fig. 1 shows the 

model structure of the Node.JS platform [4]. At the core of Node.js, we have the event loop running in a 

single process and in infinite manner. This means, that the event loop concepts looks continually at what 

events have submitted and what callbacks need to be executed. This architecture ascribes Node.js a high 

level of concurrency and therefore higher overall throughput. 

As shown in Fig. 1, the event loop queues both new requests and blocked I/O requests. The single-thread 

executes an event loop by setting up a simple mapping of all requests. The event loop gradually dequeues 

requests from the queue, then processes the request, and finally takes up the next request or waits for new 

requests.  

Using of Node.js makes it possible to write scalable network applications that inherit concurrency in their 

design. This is accomplished by event-loops. To avoid blocking, all main Application Programming 

Interface (API)-calls that involve Input/ Output are rendered asynchronous. Thus, instead of waiting for the 

function to return, the event-loop can execute the next event in the queue; and when the API-call is finished 

it activates a callback function that specifies when the call was made. There is an infinite loop running in a 

single process that continually monitors what event occurred and what callbacks need to be executed. It deals 

with queuing all events automatically and keeps making the appropriate callbacks as fast as it can. A 

developer using Node.js does not really need to know this, though they need to know that the callbacks will 

be activated as quickly as possible when events occur and the task completes [2][3]. 



Performance Evaluation of Node.js for Web Service Gateway in IoT Remote Monitoring Applications                     15 

 

 

Figure 1. The structure of Node.js. The single thread handles all incoming requests. The 

event loop running on the single thread continue look at what events have occurred and 

what callbacks needed to be executed. All components are single thread in way these 

components interacts in asynchronous manners, then able to interface with one another. 

Node runs on Google V8 (source [4]) 

 

Figure 2. Event-driven server-side for web service. This is a Conceptual Model for an 

event-driven architecture. Each incoming client request is handled by the single-thread 

event loop. Event handlers do trigger I/O actions that result on a new event later 

asynchronously. 

 

      

Figure 3. A deployment diagram of a Node.js system. It depicts Asynchronous Http client 

and communicate with the Node.js server application running on windows server. 

 

 

 



16                                      International Journal of Advanced Culture Technology Vol.4 No.3 13-19 (2016) 
 

3. Performance Investigation of server-side framework based Event-driven against no 

JavaScript server side implementing web service gateway  

To measure the performance of different use cases the program Apache JMeter 2.712 was used [5]. The 

component under test was the main back end server. The simulation of client-server architecture is presented 

on the Fig. 3. It shows a Node.Js request to write and query data from database. 

The component under test was the main back end server. JMeter works by simulating multiple users 

making multiple requests to the server. Every user is run in a separate thread. To simulate normal conditions, 

JMeter allows a “ramp-up” time to be specified. The ramp-up is the time it takes to “ramp-up” the full 

number of threads chosen. Several tests of each scenario were carried out under different cluster of web 

service gateway configurations and varying amount of loads generated by Apache JMeter. To simulate 

normal scenario, JMeter allows to configure a specific number of users and a “ramp-up” time to be specified. 

The ramp-up defines the virtual users‟ arrival rate. Hence, JMeter prompts to start all virtual users defined 

within the time specifies in “Ramp-up period”. For instance, if we have 100 threads (users) and 100 seconds 

ramp-up. This means that JMeter will start user 1 and after every 1 second, it add 1 more user.  

The test plan use JMeter to capture throughput, response time results of Node.Js„s single-thread 

event-loop against the traditional application based Java on the Apache Tomcat. The capacity and 

performance testing is required to show that an web service gateway for remote monitoring related IoT 

applications consists of backend and database layers can run with acceptable responsiveness when a large 

number of concurrent users can access the backend server-side and database simultaneously. 

In this study, we have considered three kind of architecture to implement web service gateway. Each of 

this architecture provides backend for server-side implementation and database layers. The first architecture 

for web service gateway integrates a server-side code resides on the Node.JS web server and the database 

MongoDB for our case (see Fig. 3). Thus, MongoDB fits perfectly for Node.jS applications. Therefore 

Node.js and MongoDB letting us write JavaScript for the backend and database layer [6]. Furthermore, 

MongoDB is known for its schemaless nature gives a better way to match the constantly evolving data 

structures in remote monitoring related IoT applications. The second architecture integrates server-side code 

resides on the Apache tomcat server. The application server that implements the http request is writing using 

JavaServer Pages (JSP) technology [7]. JSP uses the Java programming language. With this model, a 

relational database MySQL is used as the database. The third Client-Server Architecture consists of Apache 

Tomcat on the server-side and MongoDB database. Here, we have used the Java API for MongoDB/BSON 

in Apache Tomcat [7]. For each of the architecture for web service gateway, the goal is not to test the web 

application but to listen to the http request sent from the mobile device in the same way an http request is 

submitted from a web browser. The Application under test is based on the mobile client server computing 

that has a module of sending the commands of control from mobile device based remote monitoring IoT apps 

to the web service gateway. 

The test environment for the first architecture for web service gateway consists of web framework for 

Node.js, Node.js server-side for backend and MongoDB for database. This test model environment is 

configured with the architecture outlined below: 

(i) A user http request arrives over a SSL to the application server 

(ii) The application server forward calls to the server in the web tier 

(iii) The web tier runs in a computer 3.30 Ghz Intel core i3, 8GHz of on windows server 

(iv) The web tier runs Node.JS server, Express for Node.Js and code of MongoDB object modeling for 

node.js 

(v) The data tier runs on a separate single virtual server, which hosts the MongoDB database.  



Performance Evaluation of Node.js for Web Service Gateway in IoT Remote Monitoring Applications                     17 

 

The rest of the Client-Server architecture have the same environment as the first except both the web tier 

and data tier configuration 

 

The web service functions on Node.js would collect data from the client system such as web service or 

web-based application on smartphone. The peak load testing scenarios state is shown in the table 1 

 

Table 1. Scenarios cases for experimentation 

#scenario Concurrent users Loop (times to run the 

similar sample) 

Scenario 1  200 50 

Scenario 2 1000 50 

Scenario 3 2000 50 

 

 

3.1 Discussions of the results 

 

 
Figure 4. The performance of the three model architecture of web service gateway. The 

measurement metrics are throughput and response time 

 

 
Figure 5. The measurement of the response time on average for the three-model architecture 

of web service gateway as the number of concurrent users increase 

 

 



18                                      International Journal of Advanced Culture Technology Vol.4 No.3 13-19 (2016) 
 

The Fig. 4 shows the results of the three configuration applied to the architecture of web service gateway. 

To this performance, we analyze the throughput and response time metrics. The Node.js-JavaScript-MongoDB 

configuration outperforms. For this architecture, from 200 up to 2000 concurrent users (from 10000 to 

100000 requests), the response time is high within 173ms but the throughput in comparison to the response 

time is less low with 164 requests per second. This signifies that this architecture of web service gateway is 

capable enough to sustain a large number of concurrent clients „requests. The Apache Tomcat-JSP-MySQL 

has a higher response time but the throughput is much lower within 117 requests per second. This signifies 

that this architecture of web service gateway is not capable enough to execute concurrent requests. The third 

model that include Apache at server-side and MongoDB as database outperforms less better in comparison to 

Node.js-JavaScript-MongoDB but better than Apache Tomcat-MySQL. What we can see on Fig. 5 that the 

response time degrades as the number concurrent requests increases. For example, Node.JS-MongoDB was 

within response time of 54ms on average at 200 concurrent users, and 173ms on average at 2000 concurrent 

requests. We can see that for Apache-Tomcat at the server side, the average response time has an almost 

linear correlation to the number of concurrent requests. This means that a thousandfold increases in 

concurrent users starts to a hundredfold increase in response time. This generates to formulate that the 

number of concurrent users carried out by an Apache-Tomcat at server-side is not relatively constant. 

Therefore, Node.JS is roughly 40% faster, for example 164 responses per second against 117ms for 2000 

users that corresponds to one hundred thousand (100000) concurrent requests. 

 

5. Conclusions and Directions for Future Work 

The architecture of web service gateway constitutes of Node.JS server side and MongoDB is 40% faster 

that the Java EE solution using Apache Tomcat at the server side with MySQL or MongoDB database for 

implementing mobile client server computing applications. In this paper, the difference concurrency models 

between single-threaded event loop Node.js and multi-thread approach made difference. To test Node.js a 

higher concurrency level-where it is supposed to surpass multi-threading, other problems like increasing the 

number of requests occur. The reason is that Apache JMeter is a 100% pure Java application to evaluate the 

functional behavior and measure performance of the three architecture of web service gateway. We were not 

able to run these tests beyond 4000 concurrent users, what means over 200000 requests. For future work, we 

will look the impact of using the node.js in a real time remote and controlling IoT application such as Home 

automation. 

 

Acknowledgement 
 

This research was supported by the Brain Busan 21 Project (2016), Nurimaru R&BD project (Busan IT 

Industry Promotion Agency) (2016), and Dong-Eui University Research Institute (2016). 

This paper is a revised and expanded version of a paper entitled Performance Investigation of Event-Driven 

Server-Side for Internet of Things based Remote Monitoring Applications presented at 2nd International 

Integrated (web & Offline) Conference & Concert on Convergence, Saint Petersburg State University, 

August 7-14, 2016. 

 

References 
 

[1] L. Wang, D. Peng, and T. Zhang “Design of Smart Home System Based on WiFi Smart Plug,” The International    

Journal of Smart Home(IJSH), Vol. 9, No. 6, pp. 173-182, 2015.  



Performance Evaluation of Node.js for Web Service Gateway in IoT Remote Monitoring Applications                     19 

 

[2] Yuhao,Z.,Daniel,R.,Matthew,H.,Vijay,J.R., “Microarchitectural implications of event-driven server-side web 

applications”, Proceedings of the 48th International Symposium on Microarchitecture, pp: 762-774, 2015. 

[3] S. Tilkov, S. Vinoski, “Node.js : Using Javascript to Build High-Performance Network Programs”. Internet 

Computing, IEEE, 2010 STRIEGEL, GRAD OS F‟11, PROJECT DRAFT 6. 

[4] S.Benjamin, L.Maude. “An Inside Look at the Architectural of 

NodeJS”,http://mcgill-csus.github.io/student_projects/Submission2.pdf 

[5] H. Emily , “Apache JMeter. A practical beginner‟s guide to automated testing and performance measurement for 

your websites, PACKT PUBLISHING, BIRMINGHAM-MUMBAI, 1-138, 2008. 

[6] K. Brian, “CS764 Project Report: Adventures in Moodle Performance Analysis”, 

http://pages.cs.wisc.edu/~bpkroth/cs764/bpkroth_cs764_project_report.pdf, pp:1-28, 2016 

[7] L.N. Glenn, “Tomcat Performance Tuning and Troubleshooting”,ApacheConference, pp:1-10,2003 


