DOI QR코드

DOI QR Code

Synthesis and Photovoltaic Properties of Copolymers with Fluorinated Quinoxaline and Fluorene Moiety

Fluorine이 도입된 Quinoxaline과 Fluorene 골격을 가진 고분자의 합성 및 특성분석

  • Song, Suhee (Department of Physics, Pukyong National University) ;
  • Choi, Hyo Il (Department of Industrial Chemistry, Pukyong National University) ;
  • Shin, In Soo (Department of Physics, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Sung Heum (Department of Physics, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2016.05.31
  • Accepted : 2016.08.22
  • Published : 2016.10.10

Abstract

New electron deficient moiety, 6,7-difluoro-2,3-dihexylquinoxaline, was developed for the push-pull type copolymer for organic photovoltaics (OPVs). The PFDTQxF with lower HOMO energy level was synthesized using fluorene and 6,7-difluoro- 2,3-dihexylquinoxaline by Suzuki polymerization. The PFDTQxF thin film shows two absorption peaks at 368 and 493 nm. The HOMO and LUMO energy levels of PFDTQxF are calculated -5.55 and -3.91 eV, respectively. The device comprising PFDTQxF showed a $V_{OC}$ value of 0.47 V, a $J_{SC}$ value of $4.48mA/cm^2$, and a FF of 0.32, which yielded PCE of 0.78%, under the illumination of AM 1.5.

새로운 전자 받개인 6,7-difluoro-2,3-dihexylquinoxaline을 이용하여 유기 태양 전지형 고분자를 개발하였다. Fluorene과 6,7-difluoro-2,3-dihexylquinoxaline으로 Suzuki polymerization방법을 이용하여 낮은 HOMO 에너지를 가지는 PFDTQxF 고분자를 합성하였다. 필름상태의 PFDTQxF은 368과 493 nm에서 두 개의 흡광도를 보였다. PFDTQxF의 HOMO와 LUMO 에너지는 각각 -5.55와 -3.91 eV을 나타내었다. PFDTQxF의 태양전지 소자는 0.47 V의 $V_{OC}$$4.48mA/cm^2$$J_{SC}$와 0.32의 FF를 가지고 있어 0.78%의 에너지 효율을 나타내었다.

Keywords

References

  1. H. Y. Chen, S. C. Yeh, C. T. Chen, and C. T. Chen, Comparison of thiophene- and selenophene-bridged donor-acceptor low band-gap copolymers used in bulk-heterojunction organic photovoltaics, J. Mater. Chem., 22, 21549-21559 (2012). https://doi.org/10.1039/c2jm33735e
  2. S. Song, Y. Jin, S. H. Park, S. Cho, I. Kim, K. Lee, A. J. Heeger, and H. Suh, A low-bandgap alternating copolymer containing the dimethylbenzimidazole moiety, J. Mater. Chem., 20, 6517-6523 (2010). https://doi.org/10.1039/c0jm00772b
  3. F. C. Kreb, T. D. Nielsen, J. Fyenbo, M. Wadstrom, and M. S. Pedersen, Manufacture, integration and demonstration of polymer solar cells in a lamp for the "Lighting Africa" initiative, Energy Environ. Sci., 3, 512-525 (2010). https://doi.org/10.1039/b918441d
  4. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 317, 222-225 (2007). https://doi.org/10.1126/science.1141711
  5. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency, Adv. Mater., 18, 789-794 (2006). https://doi.org/10.1002/adma.200501717
  6. N. Chakravarthi, K. Kranthiraja, M. Song, K. Gunasekar, P. Jeong, S. J. Moon, W. S. Shin, I. N. Kang, J. W. Lee, and S. H. Jin, New alkylselenyl substituted benzodithiophene-based solution-processable 2D ${\pi}$-conjugated polymers for bulk heterojunction polymer solar cell applications, Sol. Energy Mater. Sol. Cells, 122, 136-145 (2014). https://doi.org/10.1016/j.solmat.2013.11.019
  7. S. Xiao, H. Zhou, and W. You, Conjugated polymers of fused bithiophenes with enhanced ${\pi}$-electron delocalization for photovoltaic applications, Macromolecules, 41, 5688-5696 (2008). https://doi.org/10.1021/ma800776q
  8. B. C. Thompson and J. M. J. Frechet, Polymer-fullerene composite solar cells, Angew. Chem., Int. Ed., 47, 58-77 (2008). https://doi.org/10.1002/anie.200702506
  9. J. Ha, Y. J. Kim, J. Park, T. K. An, S. K. Kwon, C. E. Park, and Y. H. Kim, Thieno[3,4-c]pyrrole-4,6-dione-based small molecules for highly efficient solution-processed organic solar cells, Chem. Asian J., 9, 1045-1053 (2014). https://doi.org/10.1002/asia.201301357
  10. Y. Yang, R. Wu, X. Wang, X. Xu, Z. Li, K. Li, and Q. Peng, Isoindigo fluorination to enhance photovoltaic performance of donor-acceptor conjugated copolymers, Chem. Commun., 50, 439-441 (2014). https://doi.org/10.1039/C3CC47677D
  11. J. Hai, W. Yu, B. Zhao, Y. Li, L. Yin, E. Zhu, L. Bian, J. Zhang, H. Wu, and W. Tang, Design and synthesis of triazoloquinoxaline polymers with positioning alkyl or alkoxyl chains for organic photovoltaics cells, Polym. Chem., 5, 1163-1172 (2014). https://doi.org/10.1039/C3PY01174G
  12. H. J. Song, D. H. Kim, E. J. Lee, and D. K. Moon, Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative, J. Mater. Chem. A, 1, 6010-6020 (2013). https://doi.org/10.1039/c3ta10512a
  13. A. Iyer, J. Bjorgaard, T. Anderson, and M. E. Kose, Quinoxalinebased semiconducting polymers: effect of fluorination on the photophysical, thermal, and charge transport properties, Macromolecules, 45, 6380-6389 (2012). https://doi.org/10.1021/ma3009788
  14. H. C. Chen, Y. H. Chen, C. C. Liu, Y. C. Chien, S. W. Chou, and P. T. Chou, Prominent short-circuit currents of fluorinated quinoxaline- based copolymer solar cells with a power conversion efficiency of 8.0%, Chem. Mater., 24, 4766-4772 (2012). https://doi.org/10.1021/cm302861s
  15. H. C. Chen, Y. H. Chen, C. H. Liu, Y. H. Hsu, Y. C. Chien, W. T. Chuang, C. Y. Cheng, C. L. Liu, S. W. Chou, S. H. Tung, and P. T. Chou, Fluorinated thienyl-quinoxaline-based D-${\pi}$-A-type copolymer toward efficient polymer solar cells: synthesis, characterization, and photovoltaic properties, Polym. Chem., 4, 3411-3418 (2013). https://doi.org/10.1039/c3py00235g
  16. S. Song, H. I. Choi, I. S. Shin, H. Suh, M. H. Hyun, G. D. Lee, S. S. Park, S. H. Park, and Y. Jin, Synthesis and photovoltaic properties of quinoxaline-based semiconducting polymers with fluoro atoms, Bull. Korean Chem. Soc., 35, 2245-2250 (2014). https://doi.org/10.5012/bkcs.2014.35.8.2245
  17. W. Lee, H. Cha, Y. J. Kim, J. E. Jeong, S. Hwang, C. E. Park, and H. Y. Woo, Amorphous thieno[3,2-b]thiophene and benzothiadiazole based copolymers for organic photovoltaics, ACS Appl. Mater. Interfaces, 6, 20510-20518 (2014). https://doi.org/10.1021/am5061189
  18. K. Cao, Z. Wu, S. Li, B. Sun, G. Zhang, and Q. Zhang, A low bandgap polymer based on isoindigo and bis(dialkylthienyl) benzodithiophene for organic photovoltaic applications, J. Polym. Sci. Polym. Chem., 51, 94-100 (2013). https://doi.org/10.1002/pola.26275
  19. S. Cho, J. H. Seo, S. H. Kim, S. Song, Y. Jin, K. Lee, H. Suh, and A. J. Heeger, Effect of substituted side chain on donor-acceptor conjugated copolymers, Appl. Phys. Lett., 93, 263301 (2008). https://doi.org/10.1063/1.3059554
  20. S. Song, H. I. Choi, I. S. Shin, J. Lee, M. H. Hyun, H. Suh, S. S. Park, S. H. Park, and Y. Jin, Synthesis and properties of copolymer with carbazole and F-quinoxaline units for OPVs, Mol. Cryst. Liquid Cryst., 620, 100-106 (2015). https://doi.org/10.1080/15421406.2015.1094884