DOI QR코드

DOI QR Code

Effects of Partial Substitution of CeO2 with M2O3 (M = Yb, Gd, Sm) on Electrical Degradation of Sc2O3 and CeO2 Co-doped ZrO2

  • Received : 2016.08.22
  • Accepted : 2016.09.22
  • Published : 2016.09.30

Abstract

Scandia-stabilized zirconia co-doped with $CeO_2$ is a promising electrolyte for intermediate temperature SOFC, but still shows rapid degradation during a long-term operation. In this study, $CeO_2$ (1 mol%) as a stabilizer is partially substituted with lanthanum oxides ($M_2O_3$, M=Yb, Gd, Sm) to stabilize a cubic phase and thus durability in reducing atmosphere. 0.5M0.5Ce10ScSZ electrolytes were prepared by solid state reaction and sintered at $1450^{\circ}C$ for 10 h to produce dense ceramic specimens. With addition of the lanthanum oxide, 0.5M0.5Ce10ScSZ showed lower degradation rates than 1Ce10ScSZ. Since $Gd_2O_3$ showed the highest ionic conductivity among the co-dopants, an electrolyte-supported cell with 0.5Gd0.5Ce10ScSZ was prepared to compare its long-term performance with that of 1Ce10ScSZ-based cell. Maximum power density of 0.5Gd0.5Ce10ScSZ-based cell was degraded by about 2.3% after 250 h, which was much lower than 1Ce10ScSZ-based cell (4.2%).

Keywords

References

  1. N. P. Brandon, S. Skinner, and B. C. H. Steele, "Recent Advances in Materials for Fuel Cells," Annu. Rev. Mater. Res, 33 [1] 183-213 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.094122
  2. J. S. Yoon, M. Y. Yoon, E. J. Lee, J.-W. Moon, and H. J. Hwang, "Influence of $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}$ Particles on Microstructure and Oxygen Permeability of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Composite Membrane," Solid State Ionics, 181 [29-30] 1387-93 (2010). https://doi.org/10.1016/j.ssi.2010.06.056
  3. K. Du, C. H. Kim, A. H. Heuer, R. Goettler, and Z. Liu, "Structural Evolution and Electrical Properties of $Sc_2O_3-$ Stabilized $ZrO_2$ Aged at $850^{\circ}C$ in Air and Wet-Forming Gas Ambients," J. Am. Ceram. Soc., 91 [5] 1626-33 (2008). https://doi.org/10.1111/j.1551-2916.2007.02138.x
  4. H. Tu and U. Stimming, "Advances, Aging Mechanisms and Lifetime in Solid-Oxide Fuel Cells," J. Power Sources, 127 [1-2] 284-93 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.025
  5. E. Ivers-Tiffee, A. Weber, and D. Herbstritt, "Materials and Technologies for SOFC-Components," J. Eur. Ceram. Soc., 21 [10] 1805-11 (2001). https://doi.org/10.1016/S0955-2219(01)00120-0
  6. N. Christiansen, J. B. Hansen, H. Holm-Larsen, S. Linderoth, P. H. Larsen, P. V. Hendriksen, and M. Mogensen, "Solid Oxide Fuel Cell Development at Topsoe Fuel Cell and Riso," Fuel Cells Bull., 2006 [8] 12-5 (2006). https://doi.org/10.1016/S1464-2859(06)71169-5
  7. J. H. Lee, H. L. Woo, and S. K. Yu, "Anode-Supported Solid Oxide Fuel Cells Prepared by Spin-Coating (in Korean)," J. Korean Ceram. Soc., 44 [12] 733-39 (2007). https://doi.org/10.4191/KCERS.2007.44.1.733
  8. Y. J. Kim and H. Lim, "Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane," J. Korean Ceram. Soc., 52 [5] 325-30 (2015). https://doi.org/10.4191/kcers.2015.52.5.325
  9. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, "Electrical Conductivity of the $ZrO_2-Ln_2O_3$ (Ln=lanthanides) System," Solid State Ionics, 121 [1] 133-39 (1999). https://doi.org/10.1016/S0167-2738(98)00540-2
  10. C. Haering, A. Roosen, and H. Schichl, "Degradation of the Electrical Conductivity in Stabilised Zirconia Systems Part I: Yttria-Stabilised Zirconia," Solid State Ionics, 176 [3-4] 253-59 (2005). https://doi.org/10.1016/j.ssi.2004.07.038
  11. C. Haering, A. Roosen, H. Schichl, and M. Schnoller, "Degradation of the Electrical Conductivity in Stabilised Zirconia System Part II: Scandia-Stabilised Zirconia," Solid State Ionics, 176 [3-4] 261-68 (2005). https://doi.org/10.1016/j.ssi.2004.07.039
  12. Y. Arachi, T. Asai, O. Yamamoto, Y. Takeda, N. Imanishi, K. Kawate, and C. Tamakoshi, "Electrical Conductivity of $ZrO_2-Sc_2O_3$ Doped with $HfO_2$, $CeO_2$, and $Ga_2O_3$," J. Electrochem. Soc., 148 [5] A520-23 (2001). https://doi.org/10.1149/1.1366622
  13. S. Yarmolenko, J. Sankar, N. Bernier, M. Klimov, J. Kapat, and N. Orlovskaya, "Phase Stability and Sintering Behavior of $10mol%\;Sc_2O_3-1mol%CeO_2-ZrO_2$ Ceramics," J. Fuel Cell Sci. Technol., 6 [2] 21007-1-8 (2009). https://doi.org/10.1115/1.2971126
  14. J. Kimpton, T.H. Randle, and J. Drennan, "Investigation of Electrical Conductivity as a Function of Dopant-Ion Radius in the Systems $Zr_{0.75}Ce_{0.08}M_{0.17}O_{1.92}$ (M = Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)," Solid State Ionics, 149 [1] 89-98 (2002). https://doi.org/10.1016/S0167-2738(02)00136-4
  15. J. H. Joo and G. M. Choi, "Effect of Ni Doping on the Phase Stability and Conductivity of Scandia-Stabilized Zirconia," Solid State Ionics, 180 [2-3] 252-56 (2009). https://doi.org/10.1016/j.ssi.2008.12.003
  16. T. I. Politova and J. T. S. Irvine, "Investigation of Scandia-Yttria-Zirconia System as an Electrolyte Material for Intermediate Temperature Fuel Cells-Influence of Yttria Content in System $(Y_2O_3)x(Sc_2O_3)(11-x)(ZrO_2)89$," Solid State Ionics, 168 [1] 153-65 (2004). https://doi.org/10.1016/j.ssi.2004.02.007
  17. S. Omar and N. Bonanos, "Ionic Conductivity Ageing Behaviour of $10mol.%\;Sc_2O_3-1mol.%\;CeO_2-ZrO_2$ Ceramics," J. Mater. Sci., 45 6406-10 (2010). https://doi.org/10.1007/s10853-010-4723-x
  18. K. S. Yun, Y. I. Kwon, J. H. Kim, S. Jo, C. Y. Yoo, J. H. Yu, and J. H. Joo, "Effects of Ni Diffusion on the Accelerated Conductivity Degradation of Scandia-Stabilized Zirconia Films under a Reducing Atmosphere," J. Eur. Ceram. Soc., 36 [7] 1835-39 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.007
  19. O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, and Y. Nakamura, "Electrical Conductivity of Stabilized Zirconia with Ytterbia and Scandia," Solid State Ionics, 79 137-42 (1995). https://doi.org/10.1016/0167-2738(95)00044-7
  20. H. A. Abbas, C. Argirusis, M. Kilo, H. D. Wiemhofer, F. F. Hammad, and Z. M. Hanafi, "Preparation and Conductivity of Ternary Scandia-Stabilised Zirconia," Solid State Ionics, 184 [1] 6-9 (2011). https://doi.org/10.1016/j.ssi.2010.10.012

Cited by

  1. Effect of CuO as Sintering Additive in Scandium Cerium and Gadolinium-Doped Zirconia-Based Solid Oxide Electrolysis Cell for Steam Electrolysis vol.7, pp.12, 2016, https://doi.org/10.3390/pr7120868