DOI QR코드

DOI QR Code

Application of a General Gas Electrode Model to Ni-YSZ Symmetric Cells: Humidity and Current Collector Effects

  • Shin, Eui-Chol (School of Materials Science and Engineering, Chonnam National University) ;
  • Ahn, Pyung-An (School of Materials Science and Engineering, Chonnam National University) ;
  • Seo, Hyun-Ho (School of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Jong-Sook (School of Materials Science and Engineering, Chonnam National University)
  • Received : 2016.09.04
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

Electrolyte-supported symmetric Ni-YSZ cermet electrodes of ca. $23{\mu}m$ were prepared by screenprinting and the impedance was measured as a function of humidity from 2% to 90% balanced in $H_2$ at a total flow rate of 50 sccm. The Ni felt current collector of 1 mm thickness exhibited a Gerischer-like gas concentration impedance in the low frequency range, which was similarly observed in the cermet-supported solid oxide cells, while the Pt paste collector exhibited only electrochemical polarization. The electrochemical polarization of both samples was modeled by a non-ideal diffusion-reaction transmission line model including CPEs with ${\alpha}$= 0.5. In the case of the Pt paste collector, all the Bisquert parameters exhibited humidity dependence to the -1/2 power, supporting a non-faradaic chemical reaction mechanism at three phase boundaries. Consequently, the surface diffusivity and reaction rate increased linearly with humidity. Less pronounced humidity dependence and somewhat lower utilization length with an Ni felt collector can be attributed to the diffusion-limited gas flow through the collector.

Keywords

References

  1. J. R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J. M. Hiller, D. J. Miller, K. Thornton, P. W. Voorhees, S. B. Adler, and S. A. Barnett, "Three-Dimensional Reconstruction of a Solid-Oxide Fuel-Cell Anode," Nat. Mater., 5 [7] 541-44 (2006). https://doi.org/10.1038/nmat1668
  2. P. Shearing, J. Golbert, R. Chater, and N. Brandon, "3D Reconstruction of SOFC Anodes Using a Focused Ion Beam Lift-Out Technique," Chem. Eng. Sci., 64 [17] 3928-33 (2009). https://doi.org/10.1016/j.ces.2009.05.038
  3. H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, and H. Yoshida, "Quantification of SOFC Anode Microstructure Based on Dual Beam FIB-SEM Technique," J. Power Sources, 195 [4] 955-61 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.005
  4. J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, "Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in $H_2-H_2O$ Atmospheres," J. Electrochem. Soc., 141 [8] 2129-34 (1994). https://doi.org/10.1149/1.2055073
  5. A. Utz, H. Stormer, A. Leonide, A. Weber, and E. Ivers-Tiffee, "Degradation and Relaxation Effects of Ni Patterned Anodes in $H_2-H_2O$ Atmosphere," J. Electrochem. Soc., 157 [6] B920-30 (2010). https://doi.org/10.1149/1.3383041
  6. W. G. Bessler, M. Vogler, H. Stormer, D. Gerthsen, A. Utz, A. Weber, and E. Ivers-Tiffee, "Model Anodes and Anode Models for Understanding the Mechanism of Hydrogen Oxidation in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 12 [42] 13888-903 (2010). https://doi.org/10.1039/c0cp00541j
  7. M. Vogler, A. Bieberle-Hutter, L. Gauckler, J. Warnatz, and W. G. Bessler, "Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode," J. Electrochem. Soc., 156 [5] B663-72 (2009). https://doi.org/10.1149/1.3095477
  8. A. M. Sukeshini, B. Habibzadeh, B. P. Becker, C. A. Stoltz, B. W. Eichhorn, and G. S. Jackson, "Electrochemical Oxidation of $H_2$, CO, and $CO/H_2$ Mixtures on Patterned Ni Anodes on YSZ Electrolytes," J. Electrochem. Soc., 153 [4] A705-15 (2006). https://doi.org/10.1149/1.2170577
  9. M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. Choi, "Rational SOFC Material Design: New Advances and Tools," Mater. Today, 14 [11] 534-46 (2011). https://doi.org/10.1016/S1369-7021(11)70279-6
  10. E.-C. Shin, P.-A. Ahn, H.-H. Seo, J.-M. Jo, S.-D. Kim, S.-K. Woo, J. H. Yu, J. Mizusaki, and J.-S. Lee, "Polarization Mechanism of High Temperature Electrolysis in a Ni-YSZ/YSZ/LSM Solid Oxide Cell by Parametric Impedance Analysis," Solid State Ionics, 232 80-96 (2013). https://doi.org/10.1016/j.ssi.2012.10.028
  11. E.-C. Shin, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, S.-D. Kim, S.-K. Woo, J. H. Yu, and J.-S. Lee, "Pinning-down Polarization Losses and Electrode Kinetics in Cermet-Supported LSM Solid Oxide Cells in Reversible Operation," Solid State Ionics, 277 1-10 (2015). https://doi.org/10.1016/j.ssi.2015.04.009
  12. E.-C. Shin, J. J. Ma, P.-A. Ahn, H.-H. Seo, D. T. Nguyen, and J.-S. Lee, "Deconvolution of Four Transmission-Line-Model Impedances in Ni-YSZ/YSZ/LSM Solid Oxide Cells and Mechanistic Insights," Electrochim. Acta, 188 240-53 (2016). https://doi.org/10.1016/j.electacta.2015.11.118
  13. V. Sonn, A. Leonide, and E. Ivers-Tiffee, "Combined Deconvolution and CNLS Fitting Approach Applied on the Impedance Response of Technical Ni/ 8YSZ Cermet Electrodes," J. Electrochem. Soc., 155 B675-79 (2008). https://doi.org/10.1149/1.2908860
  14. J. Nielsen, T. Klemens, and P. Blennow, "Detailed Impedance Characterization of a Well Performing and Durable Ni: CGO Infiltrated Cermet Anode for Metal-Supported Solid Oxide Fuel Cells," J. Power Sources, 219 305-16 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.031
  15. T. Ramos, M. Sogaard, and M. B. Mogensen, "Electrochemical Characterization of Ni/ScYSZ Electrodes as SOFC Anodes," J. Electrochem. Soc., 161 [4] F434-44 (2014). https://doi.org/10.1149/2.045404jes
  16. J. Nielsen and J. Hjelm, "Impedance of SOFC Electrodes: A Review and a Comprehensive Case Study on the Impedance of LSM: YSZ Cathodes," Electrochim. Acta, 115 31-45 (2014). https://doi.org/10.1016/j.electacta.2013.10.053
  17. R. de Levie, "On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects," Electrochim. Acta, 8 [10] 751-80 (1963). https://doi.org/10.1016/0013-4686(63)80042-0
  18. J. Bisquert, "Influence of the Boundaries in the Impedance of Porous Film Electrodes," Phys. Chem. Chem. Phys., 2 [18] 4185-92 (2000). https://doi.org/10.1039/b001708f
  19. J. Bisquert, "Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer," J. Phys. Chem. B, 106 [2] 325-33 (2002). https://doi.org/10.1021/jp011941g
  20. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, and M. Gratzel, "Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye- Sensitized Solar Cells Based on Ionic Liquids," J. Phys. Chem. C, 111 [17] 6550-60 (2007). https://doi.org/10.1021/jp066178a
  21. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of Nanostructured Hybrid and Organic Solar Cells by Impedance Spectroscopy," Phys. Chem. Chem. Phys., 13 [20] 9083-118 (2011). https://doi.org/10.1039/c0cp02249g
  22. J. Bisquert, I. Mora-Sero, and F. Fabregat-Santiago, "Diffusion-Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination," ChemElectroChem, 1 [1] 289-96 (2014). https://doi.org/10.1002/celc.201300091
  23. J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, "Electrode Reaction at $Pt,O_2(g)$/Stabilized Zirconia Interfaces. Part I: Theoretical Consideration of Reaction Model," Solid State Ionics, 22 [4] 313-22 (1987). https://doi.org/10.1016/0167-2738(87)90149-4
  24. J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, "Electrode Reaction at $Pt,O_2(g)$/Stabilized Zirconia Interfaces. Part II: Electrochemical Measurements and Analysis," Solid State Ionics, 22 [4] 323-30 (1987). https://doi.org/10.1016/0167-2738(87)90150-0
  25. J. Mizusaki and H. Tagawa, "Microstructure and Electrochemical Property relationship for $O_2$ Reduction in Zirconia Cells," pp. 75-87 in Proc. of the Symposium on High Temperature Electrode Materials and Characterization. Eds. by D. D. MacDonald and A. C. Khandkar, Vol. 91-6. The Electrochem. Soc., Pennington, NJ, 1991.
  26. J. Mizusaki, H. Tagawa, T. Saito, T. Yamamura, K. Kamitani, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, and K. Hashimoto, "Kinetic Studies of the Reaction at the Nickel Pattern Electrode on YSZ in $H_2-H_2O$ Atmospheres," Solid State Ionics, 70 52-8 (1994).
  27. J. Mizusaki, H. Tagawa, K. Isobe, M. Tajika, I. Koshiro, H. Maruyama, and K. Hirano, "Kinetics of the Electrode Reaction at the $H_2-H_2O$ Porous Pt/Stabilized Zirconia Interface," J. Electrochem. Soc., 141 [6] 1674-83 (1994). https://doi.org/10.1149/1.2054982
  28. J. Mizusaki, "Model for Solid Electrolyte Gas Electrode Reaction Kinetics; Key Concepts, Basic Model Construction, Extension of Models, New Experimental Techniques for Model Confirmation, and Future Prospects," Electrochemistry, 82 [10] 819-29 (2014). https://doi.org/10.5796/electrochemistry.82.819
  29. W. Bessler, "Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes I. Stagnation Point Flow Geometry," J. Electrochem. Soc., 153 A1492-54 (2006). https://doi.org/10.1149/1.2205150
  30. A. Leonide, B. Ruger, A. Weber, W. Meulenberg, and E. Ivers-Tiffee, "Impedance Study of Alternative $(La,Sr)FeO_{3-{\delta}}$ and $(La,Sr)(Co,Fe)O_{3-{\delta}}$ MIEC Cathode Compositions," J. Electrochem. Soc., 157 B234-39 (2010). https://doi.org/10.1149/1.3265473
  31. G.-R. Kim, H.-H. Seo, J.-M. Jo, E.-C. Shin, J. H. Yu, and J.-S. Lee, "Moving Boundary Diffusion Problem for Hydration Kinetics Evidenced in Non-Monotonic Conductivity Relaxations of Proton Conducting Perovskites," Solid State Ionics, 272 60-73 (2015). https://doi.org/10.1016/j.ssi.2015.01.003
  32. M. Guillodo, P. Vernoux, and J. Fouletier, "Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells: Effect of Current Collecting," Solid State Ionics, 127 [1] 99-107 (2000). https://doi.org/10.1016/S0167-2738(99)00254-4
  33. J.-H. Kim, E.-C. Shin, D.-C. Cho, S. Kim, S. Lim, K. Yang, J. Beum, J. Kim, S. Yamaguchi, and J.-S. Lee, "Electrical Characterization of Polycrystalline Sodium ${\beta}''$-Alumina: Revisited and Resolved," Solid State Ionics, 264 22-35 (2014). https://doi.org/10.1016/j.ssi.2014.06.011
  34. S.-H. Moon, D.-C. Cho, D. T. Nguyen, E.-C. Shin, and J.-S. Lee, "A Comprehensive Treatment of Universal Dispersive Frequency Responses in Solid Electrolytes by Immittance Spectroscopy: Low Temperature AgI Case," J. Solid State Electrochem., 19 [8] 2457-64 (2015). https://doi.org/10.1007/s10008-015-2888-6
  35. S.-H. Moon, Y. H. Kim, D.-C. Cho, E.-C. Shin, D. Lee, W. B. Im, and J.-S. Lee, "Sodium Ion Transport in Polymorphic Scandium NASICON Analog $Na_3Sc_2(PO_4)_3$ with New Dielectric Spectroscopy Approach for Current-Constriction Effects," Solid State Ionics, 289 55-71 (2016). https://doi.org/10.1016/j.ssi.2016.02.017
  36. J.-S. Lee, "A Superior Description of AC Behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects," J. Korean Ceram. Soc., 53 [2] 150-61 (2016). https://doi.org/10.4191/kcers.2016.53.2.150
  37. J. Bisquert and A. Compte, "Theory of the Electrochemical Impedance of Anomalous Diffusion," J. Electroanal. Chem., 499 [1] 112-20 (2001). https://doi.org/10.1016/S0022-0728(00)00497-6
  38. S. Primdahl and M. Mogensen, "Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes," J. Electrochem. Soc., 145 [7] 2431-38 (1998). https://doi.org/10.1149/1.1838654
  39. S. Primdahl and M. Mogensen, "Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes," J. Electrochem. Soc., 146 2827-33 (1999). https://doi.org/10.1149/1.1392015
  40. W. Bessler and S. Gewies, "Gas Concentration Impedance of Solid Oxide Fuel Cell Anodes II. Channel Geometry," J. Electrochem. Soc., 154 B548-59 (2007). https://doi.org/10.1149/1.2720639
  41. P.-A. Ahn, E.-C. Shin, G.-R. Kim, and J.-S. Lee, "Application of Generalized Transmission Line Models to Mixed Ionic-Electronic Transport Phenomena," J. Korean Ceram. Soc. 48 [6] 549-58 (2011). https://doi.org/10.4191/kcers.2011.48.6.549
  42. P.-A. Ahn, E.-C. Shin, J.-M. Jo, J. H. Yu, S.-K. Woo, and J.-S. Lee, "Mixed Conduction in Ceramic Hydrogen/Steam Electrodes by Hebb-Wagner Polarization in the Frequency Domain," Fuel Cells, 12 1070-84 (2012). https://doi.org/10.1002/fuce.201200066

Cited by

  1. Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.11