DOI QR코드

DOI QR Code

Preparation of Granule Powders for Thermal Spray Coating by Utilization of Pyrophyllite Minerals

  • Kim, Yong-Hyeon (The Research Institute of Ceramic Industry Technology in Mokpo National University) ;
  • Shin, Pyung-Woo (Research Center, Sewon Hardfacing Co., Ltd.) ;
  • Lee, Sang-Jin (The Research Institute of Ceramic Industry Technology in Mokpo National University)
  • Received : 2016.06.18
  • Accepted : 2016.08.31
  • Published : 2016.09.30

Abstract

Pyrophyllite granule powders for thermal spray coating were successfully prepared through spray drying process. To produce a stable slurry, commercial pyrophyllite powder of $45{\mu}m$ in size was ball-milled for reduction of the size to $2{\sim}3{\mu}m$ and a dispersant was added to control the viscosity. Dense and spherical granules (average granule size : $59{\mu}m$) were prepared under conditions of 12,500 rpm for rotation velocity of the atomizer and 100 cps for slurry viscosity. The granules were then heat treated at $1,200^{\circ}C$ for proper handling strength and flow properties. The final granules had an apparent density of $0.725g/cm^3$ and a flow rate of 2.5 g/sec, which represent excellent properties to be used as the granule powder for thermal spray coatings.

Keywords

References

  1. J. H. Yoo, Y. U. Kim, and G. J. Lee, "Mineralogical Characteristics and Designation of Key Beds for the Effective Surveys of the Jeonnam Pyrophyllite Deposits (in Koran)," J. Miner. Soc. Kor., 22 [4] 297-305 (2009).
  2. S. M. Koh, "Suggestion on Quality Specifications of Domestic Pyrophyllite according to Utilization," J. Miner. Soc. Kor., 20 [1] 61-70 (2007).
  3. S. H. Lee, C. K. Cho, and W. T. Bac, "A Study on the Preparation of Alumina Powders from Bauxite by Wet Acid Process and Their Utilization (II) : Mullitization of Pyrophyllite- Aluminum Hydrate Gel Mixture (in Koran)," J. Korean Ceram. Soc., 27 [8] 1011-19 (1990).
  4. D. M. Choi, J. S. Lee, N. H. Kim, and S. C. Choi, "High Temperature Reaction Behaviors of Oxide Materials with Carbon for Refractory Application (in Koran)," J. Korean Ceram. Soc., 44 [6] 331-37 (2007). https://doi.org/10.4191/KCERS.2007.44.6.331
  5. H. S. Park, K. S. Cho, and C. S. Mun, "The Study on Fabrication of LAS System Ceramics for Thermal Shock Resistance from Silicate Minerals : (II) Preparation of Spodumene Powders with Sillimanite, Kaolin and Pyrophyllite Group Minerals," J. Miner. Soc. Kor., 31 [7] 784-94 (1994).
  6. D. M. Kim, S. I. Jung, H. C. Lee, and S. J. Lee, "Synthesis of Low-Thermal-Expansion Cordierite Ceramics Prepared from Pyrophyllite," J. Mater. Res. Kor., 25 [7] 330-35 (2015). https://doi.org/10.3740/MRSK.2015.25.7.330
  7. P. Fauchais, "Understanding Plasma Spraying," J. Phys. D. Appl. Phys., 37 [9] 86-108 (2004). https://doi.org/10.1088/0022-3727/37/1/014
  8. S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, K. S. Lee, and U. Paik, "Microstructure Design and Mechanical Properties of Thermal Barrier Coatings with Layered Top and Bond Coats," J. Surf. Coat. Technol., 205 [5] 1229-35 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.063
  9. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, "Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability," Mater. Sci. Eng. A, 497 239-53 (2008). https://doi.org/10.1016/j.msea.2008.07.058
  10. D. H. Lee and K. S. Lee, "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test (in Koran)," J. Korean Ceram. Soc., 48 [5] 396-403 (2011). https://doi.org/10.4191/kcers.2011.48.5.396
  11. S. C. Byeon, H. J. Je, and K. S. Hong, "Spray Drying of Ferrite Powders and the Characteristics of the Granule (in Koran)," J. Korean Ceram. Soc., 32 [5] 549-58 (1995).
  12. X. Q. Cao, R. Vassen, S. Schwartz, W. Jungen, F. Tietz, and D. Stever, "Spray-drying of Ceramics for Plasma-Spray Coating," J. Eur. Ceram. Soc., 20 2433-39 (2000). https://doi.org/10.1016/S0955-2219(00)00112-6
  13. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, "Low Conductivity Plasma Sprayed Thermal Barrier Coatings Using Hollow PSZ Spheres: Correlation between Thermophysical Properties and Microstructure," Surf. Coat. Technol., 202 1994-2001 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.042
  14. B. Ercan, K. J. Bowman, R. W. Trice, H. Wang, and W. Porter, "Effect of Initial Powder Morphology on Thermal and Mechanical Properties of Stand-alone Plasma-Sprayed 7 wt% $Y_2O_3-ZrO_2$ Coatings," Mater. Sci. Eng. A, 435 212-20 (2006).
  15. Schrijnemakers, S. Andr, G. Lumay, N. Vandwalle, F. Boschini, R. Cloots, and B. Vertruyen, "Mullite Coatings on Ceramic Substrates: Stabilization of $Al_2O_3-SiO_2$ Suspensions for Spray Drying of Composite Granules Suitable for Reactive Plasma Spraying," J. Eur. Ceram. Soc., 29 2169-75 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.01.031
  16. L. Wang, Y. Wang, X. G. Sun, J. Q. He, Z. Y. Pan, and L. L. Yu, "Preparation and Characterization of Nanostructured $La_2Zr_2O_7$ Feedstock Used for Plasma Spraying," Powder Technol., 212 267-77 (2011). https://doi.org/10.1016/j.powtec.2011.06.001
  17. Y. Bai, J. J. Tang, Y. M. Qu, S. Q. Ma, C. H. Ding, J. F. Yang, L. Yu, and Z. H. Han, "Influence of Original Powders on the Microstructure and Properties of Thermal Barrier Coatings Deposited by Supersonic Atmospheric Plasma Spraying, Part I: Microstructure," Ceram. Int., 39 5113-24 (2013). https://doi.org/10.1016/j.ceramint.2012.12.007
  18. S. J. Lukasiewicz, "Spray-Drying Ceramic Powder," J. Am. Ceram. Soc., 72 [4] 617-24 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06184.x
  19. H. Zhang, Y. Xie, L. Huang, S. Huang, X. Zheng, and G. Chen, "Effect of Feedstock Particle Sizes on Wear Resistance of Plasma Sprayed Fe-based Amorphous Coatings," J. Surf. Coat. Technol., 258 495-502 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.050
  20. C. Kim, Y. S Heo, T. W. Kim, and K. S. Lee, "Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (in Koran)," J. Korean Ceram. Soc., 50 [5] 326-32 (2013). https://doi.org/10.4191/kcers.2013.50.5.326