DOI QR코드

DOI QR Code

Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides

  • Park, Mansoo (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Wo Dum (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Choi, Sungjun (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Son, Kihyun (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Jung, Hun-Gi (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Hyoungchul (High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology)
  • Received : 2016.07.22
  • Accepted : 2016.08.25
  • Published : 2016.09.30

Abstract

We explore the crystalline structure and phase transition of lithium thiophosphate ($Li_7P_3S_{11}$) solid electrolyte using electron microscopy and X-ray diffraction. The glass-like $Li_7P_3S_{11}$ powder is prepared by the high-energy mechanical milling process. According to the energy dispersive X-ray spectroscopy (EDS) and selected area diffraction (SAD) analysis, the glass powder shows chemical homogeneity without noticeable contrast variation at any specific spot in the specimen and amorphous SAD ring patterns. Upon heating up to $260^{\circ}C$ the glass $Li_7P_3S_{11}$ powder becomes crystallized, clearly representing crystal plane diffraction contrast in the high-resolution transmission electron microscopy image. We further confirm that each diffraction spot precisely corresponds to the diffraction from a particular $Li_7P_3S_{11}$ crystallographic structure, which is also in good agreement with the previous X-ray diffraction results. We expect that the microscopic analysis with EDS and SAD patterns would permit a new approach to study in the atomic scale of other lithium ion conducting sulfides.

Keywords

References

  1. B. B. Owens and P. M. Skarstad, "Ambient Temperature Solid State Batteries," Solid State Ion., 53-56 665-72 (1992). https://doi.org/10.1016/0167-2738(92)90444-T
  2. J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chem. Mater., 22 [3] 587-603 (2010). https://doi.org/10.1021/cm901452z
  3. K. Takada, "Progress and Prospective of Solid-State Lithium Batteries," Acta Mater., 61 [3] 759-70 (2013). https://doi.org/10.1016/j.actamat.2012.10.034
  4. J. G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M. J. Choi, H. Y. Chung, and S. Park, "A Review of Lithium and Non-Lithium Based Solid State Batteries," J. Power Sources, 282 299-322 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.054
  5. M. Tatsumisago and A. Hayashi, "Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries," Int. J. Appl. Glass Sci., 5 [3] 226-35 (2014). https://doi.org/10.1111/ijag.12084
  6. M. Tachez, J. P. Malugani, R. Mercier, and G. Robert, "Ionic Conductivity and Phase Transition in Lithium Thiophosphate $Li_3PS_4$," Solid State Ion., 14 181-85 (1984). https://doi.org/10.1016/0167-2738(84)90097-3
  7. K. Takada, N. Aotani, K. Iwamoto, and S. Kondo, "Solid State Lithium Battery with Oxysulfide Glass," Solid State Ion., 86-88 877-82 (1996). https://doi.org/10.1016/0167-2738(96)00199-3
  8. A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, and T. Minami, "Preparation of $Li_2S-P_2S_5$ Amorphous Solid Electrolytes by Mechanical Milling," J. Am. Ceram. Soc., 84 [2] 477-79 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00685.x
  9. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, "New, Highly Ion-Conductive Crystals Precipitated from $Li_2S-P_2S_5$ Glasses," Adv. Mater., 17 [7] 918-21 (2005). https://doi.org/10.1002/adma.200401286
  10. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, "A Lithium Superionic Conductor," Nat. Mater., 10 682-86 (2011). https://doi.org/10.1038/nmat3066
  11. G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, and C. Liang, "Air-Stable, High-Conduction Solid Electrolytes of Arsenic-Substituted $Li_4SnS_4$," Energy Environ. Sci., 7 1053-58 (2014). https://doi.org/10.1039/C3EE43357A
  12. D. Qian, C. Ma, K. L. More, Y. S. Meng, and M. Chi, "Advanced Analytical Electron Microscopy for Lithium-Ion Batteries," NPG Asia Mater., 7 e193 (2015). https://doi.org/10.1038/am.2015.50
  13. A. Sakuda, A. Hayashi, and M. Tatsumisago, "Interfacial Observation between LiCoO Electrode and $Li_2S-P_2S_5$ Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy," Chem. Mater., 22 [3] 949-56 (2010). https://doi.org/10.1021/cm901819c
  14. J. H. Woo, J. E. Trevey, A. S. Cavanagh, Y. S. Choi, S. C. Kim, S. M. George, K. H. Oh, and S. H. Lee, "Nanoscale Interface Modification of $LiCoO_2$ by $Al_2O_3$ Atomic Layer Deposition for Solid-State Li Batteries," J. Electrochem. Soc., 159 [7] A1120-24 (2012). https://doi.org/10.1149/2.085207jes
  15. M. H. Hebb, "Electrical Conductivity of Siliver Sulfide," J. Chem. Phys., 20 [1] 185-190 (1952). https://doi.org/10.1063/1.1700165
  16. H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, and M. Tatsumisago, "Crystal Structure of a Superionic Conductor, $Li_7P_3S_{11}$," Solid State Ion., 178 1163-67 (2007). https://doi.org/10.1016/j.ssi.2007.05.020
  17. M. Tatsumisago, M. Nagao, and A. Hayashi, "Recent Development of Sulfide Solid Electrolytes and Interfacial Modification for All-Solid-State Rechargeable Lithium Batteries," J. Asian Ceram. Soc., 1 [1] 17-25 (2013). https://doi.org/10.1016/j.jascer.2013.03.005

Cited by

  1. Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries vol.11, pp.10, 2018, https://doi.org/10.3390/en11102559
  2. Atomistic Assessments of Lithium-Ion Conduction Behavior in Glass-Ceramic Lithium Thiophosphates vol.11, pp.1, 2016, https://doi.org/10.1021/acsami.8b17524