반도체 나노선 기반 전계효과 트랜지스터 방식 가스 센서의 기술 동향

  • 최명식 (한양대학교 신소재공학과) ;
  • 김현우 (한양대학교 신소재공학과)
  • Published : 2016.10.01

Abstract

Keywords

References

  1. Xu, C.N.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain-size effects on gas sensitivity of porous $SnO_{2}$-based elements. Sens. Actuators B Chem. 1991, 3, 147-155. https://doi.org/10.1016/0925-4005(91)80207-Z
  2. Gas sensors market-global industry size, share, trends, analysis and forecast, 2012-2018. A report by Transparency Market Research-Albany, NY, USA, 2013.
  3. Oyabu, T.; Osawa, T.; Kurobe, T. Sensing characteristics of tin oxide thick-film gas sensor. J. Appl. Phys. 1982, 53, 7125-7130. https://doi.org/10.1063/1.331605
  4. Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991, 5, 7-19. https://doi.org/10.1016/0925-4005(91)80213-4
  5. Huang, J.; Wan, Q. Gas sensors based on semiconduct ing metal oxide onedimensional nanostructures. Sensors 2009, 9, 9903-9924. https://doi.org/10.3390/s91209903
  6. Lundstrom, I.; Armgarth, M.; Spetz, A.; Winquist, F. Gas sensors based on catalytic metal-gate field-ef fect devices. Sens. Actuators 1986, 10, 399-421. https://doi.org/10.1016/0250-6874(86)80056-7
  7. Spetz, A.L.; Skoglundh, M.; Ojamae, L. FET Gas-Sensing Mechanism, Experimental and Theoretical Studies. In Solid State Gas Sensing; Comini, E., Ed.; Springer: New York, NY, USA, 2009; pp. 1-27.
  8. Yu, H.-D.; Regulacio, M.D.; Ye, E.; Han, M.-Y. Chemical routes to top-down nanofabrication. Chem. Soc. Rev. 2013, 42, 6006-6018. https://doi.org/10.1039/c3cs60113g
  9. Li, C.; Zhang, D.; Liu, X.; Han, S.; Tang, T.; Han, J.; Zhou, C. $In_{2}O_{3}$ nanowires as chemical sensors. Appl. Phys. Lett. 2003, 82, 1613-1615. https://doi.org/10.1063/1.1559438
  10. Zhang, Y.; Kolmakov, A.; Chretien, S.; Met iu, H.; Moskovits, M. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett. 2004, 4, 403-407. https://doi.org/10.1021/nl034968f
  11. Mubeen, S.; Moskovits, M. Gate-tunable surface processes on a single-nanowire field-effect transistor. Adv. Mater. 2011, 23, 2306-2312. https://doi.org/10.1002/adma.201004203
  12. Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 2004, 85, 6389-6391. https://doi.org/10.1063/1.1840116
  13. Fan, Z.; Lu, J.G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, doi:10.1063/1.1883715.
  14. Zou, X.; Wang, J.; Liu, X.; Wang, C.; Jiang, Y.; Wang, Y.; Xiao, X.; Ho, J.C.; Li, J.; Jiang, C.; et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287-3292. https://doi.org/10.1021/nl401498t
  15. Talin, A.A.; Hunter, L.L.; Leonard, F.; Rokad, B. Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 2006, doi:10.1063/1.2358214.
  16. Ahn, J.-H.; Yun, J.; Choi, Y.-K.; Park, I. Palladium nanoparticle decorated silicon nanowire field-effect transistor with sidegates for hydrogen gas detection. Appl. Phys. Lett. 2014, doi:10.1063/1.4861228.