DOI QR코드

DOI QR Code

Influence of Maleic Anhydride Grafted onto Polyethylene on Pyrolysis Behaviors

  • Received : 2016.09.02
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

Polyethylene (PE) and maleic anhydride-grafted PE (PE-g-MAH) were pyrolyzed, and their pyrolysis products were analyzed using gas chromatography/mass spectrometry (GC/MS) to investigate the influence of MAH grafted onto PE on pyrolysis behaviors. Major pyrolysis products of PE and PE-g-MAH were n-alkanes, 1-alkenes, ${\alpha},{\omega}$-alkadienes, and aromatic compounds. 1-Alkenes were more formed than n-alkanes, ${\alpha},{\omega}$-alkadienes, and aromatic compounds. Butadiene was more produced from PE than PE-g-MAH, whereas toluene and ethyl benzene were more generated from PE-g-MAH than PE. Difference in the pyrolysis behaviors between PE and PE-g-MAH were explained by initial decomposition of MAH moiety.

Keywords

References

  1. T. Shin, "Analytical Pyrolysis-Past, Present and Future", J. Anal. Pyrolysis., 32, 1 (1995). https://doi.org/10.1016/0165-2370(94)00852-R
  2. P. Kusch, Advanced Gas Chromatography - Progress in Agricultural, Biomedical and Industrial Applications, M. A. Mohd (Ed.), InTech, Vienna, Austria (2012).
  3. B. S. Shin, S. T. Jung, J. P. Jeun, H. B. Kim, S. H. Oh, and P. H. Kang, "A Study on Flammability and Mechanical Properties of HDPE/EPDM/Boron Carbide/Triphenyl Phosphate Blends with Compatibilizer", Polymer(Korea), 36, 549 (2012).
  4. C. K. Hong, M. J. Kim, S. H. Oh, Y. S. Lee, and C. Nah, "Effects of Polypropylene-g-(maleic anhydride/styrene) Compatibilizer on Mechanical and Rheological Properties of Polypropylene/Clay Nanocomposites", J. Ind. Eng. Chem., 14, 236 (2008). https://doi.org/10.1016/j.jiec.2007.11.001
  5. J. H. Lee, D. S. Jung, C. E. Hong, K. Y. Rhee, and S. G. "Advani, Properties of Polyethylene-Layered Silicate Nano-Composites Prepared by Melt Intercalation with a PP-g-MA Compatibilizer", Compos. Sci. Technol., 65, 1996 (2005). https://doi.org/10.1016/j.compscitech.2005.03.015
  6. H. Zhai, W. Xu, H. Guo, Z. Zhou, S. Shen, and Q. Song, "Preparation and Characterization of PE and PE-g-MAH/Montmorillonite Nanocomposites", Eur. Polym. J., 40, 2539 (2004). https://doi.org/10.1016/j.eurpolymj.2004.07.009
  7. W. Liu, Y.-J. Wang, and Z. Sun, "Effects of Polyethylenegrafted Maleic Anhydride (PE-g-MA) on Thermal Properties, Morphology, and Tensile Properties of Low-Density Polyethylene (LDPE) and Corn Starch Blends", J. Appl. Polym. Sci., 88, 2904 (2003). https://doi.org/10.1002/app.11965
  8. A. Brown and K. Fujimori, "A Method for the Determination of Maleic Anhydride Content in Copolymers", Polym. Bull., 16, 441 (1986). https://doi.org/10.1007/BF00955576
  9. S. M. Fakhrhoseini and M. Dastanian, "Predicting Pyrolysis Products of PE, PP, and PET using NRTL Activity Coefficient Model", J. Chem., 2013, Article ID 487676 (2013).
  10. S. Kumar and R. K. Singh, "Thermolysis of High-Density Polyethylene to Petroleum Products", J. Pet. Eng., 2013, Article ID 987568 (2013).
  11. J. A. Conesa, R. Font, A. Marcilla, and A. N. Garcia, "Pyrolysis of Polyethylene in a Fluidized Bed Reactor", Energy Fuels, 8, 1238 (1994). https://doi.org/10.1021/ef00048a012
  12. J. Walendziewski, "Engine Fuel Derived from Waste Plastics by Thermal Treatment", Fuel, 81, 473 (2002). https://doi.org/10.1016/S0016-2361(01)00118-1
  13. M. D. Wallis and S. K. Bhatia, "Thermal Degradation of High Density Polyethylene in a Reactive Extruder", Polym. Degrad. Stab., 92, 1721 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.06.002
  14. P. T. Williams and E. A. Williams, "Fluidised Bed Pyrolysis of Low Density Polyethylene to Produce Petrochemical Feedstock", J. Anal. Appl. Pyrolysis, 51, 107 (1999). https://doi.org/10.1016/S0165-2370(99)00011-X
  15. Y. Murata, "Thermal Decomposition of Maleic Anhydride in Liquid Phase", Nippon Kagaku Kaishi, 4, 587 (1978).
  16. R. A. Back and J. M. Parsons, "The Thermal and Photochemical Decomposition of Maleic Anhydride in the Gas Phase", Can. J. Chem., 59, 1342 (1981). https://doi.org/10.1139/v81-197
  17. J. K. West, A. B. Brennan, A. E. Clark, M. Zamora, and L. L. Hench, "Cyclic Anhydride Ring Opening Reactions: Theory and Application", J. Biomed. Mater. Res., 41, 8 (1998). https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<8::AID-JBM2>3.0.CO;2-N
  18. J. W. Huang, W. C. Lu, M. Y. Yeh, C. H. Lin, and I. S. Tsai, "Unusual Thermal Degradation of Maleic Anhydride Grafted Polyethylene", Polym. Eng. Sci., 48, 1550 (2008). https://doi.org/10.1002/pen.21129
  19. C. Schwarzinger, I. Hintersteiner, B. Schwarzinger, W. Buchberger, and B. Moser, "Analytical Pyrolysis in the Determination of the Aging of Polyethylene", J. Anal. Appl. Pyrolysis, 113, 315 (2015). https://doi.org/10.1016/j.jaap.2015.02.005
  20. M. Lazar, J. Rychly, V. Klimo, Pe. Pelikan, and L. Valko, "Free Radicals in Chemistry and Biology", ed. by M. Lazar, 1st Ed., p.198, CRC press, Boca Raton, Florida (1989).