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This work suggests a new analysis approach for a discrete-time GI/G/1 queue with multiple vacations. The 
method used is called a modified supplementary variable technique and our result is an exact transform-free 
expression for the steady state queue length distribution. Utilizing this result, we propose a simple two-moment 
approximation for the queue length distribution. From this, approximations for the mean queue length and the 
probabilities of the number of customers in the system are also obtained. To evaluate the approximations, we 
conduct numerical experiments which show that our approximations are remarkably simple yet provide fairly 
good performance, especially for a Bernoulli arrival process.
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1. Introduction

Most real queueing situations arising in banks, computer net-
works, telecommunication systems, manufacturing systems, 
etc. can be modeled as queueing systems with general inter-
arrival times and general service times. These queueing sys-
tems present an interest subject for which to devise a practical 
analysis method. However, due to the limited information on 
their distributions, the analysis of such a queue is notoriously 
difficult. While several approximations have been proposed, 
they are often computationally demanding. Moreover, most 
of the approximation methods have been applied to conti-
nuous- time queueing systems.

Thanks to recent advances in computer and telecommuni-
cation technology, the importance of discrete-time queueing 

systems has been increased. That is why continuous-time 
queueing systems can not accurately give the performance 
measures of computer and telecommunication systems where 
basic operational units are bits, packets and cells, although 
they have been used in the past to approximately evaluate some 
performance measures of these systems. Hence, discrete-time 
queueing systems are potentially more suitable for applica-
tion to the digital computer and communication networks.

In discrete-time queueing systems, the time axis is segmen-
ted into a sequence of equal intervals of unit duration, called 
slots. It is always assumed that interarrival times, service 
times, and vacation times are integral multiples of a slot 
duration. Also, it is assumed that the state of the system 
changes only at a slot boundary     ⋯. Under these 
assumptions, note that an arrival and a departure can occur 
simultaneously at a slot boundary. Considering the order of 
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these simultaneous events, there have been two typical as-
sumptions: late arrival system (LAS) and early arrival system 
(EAS). According to the LAS model, a potential arrival takes 
place in the interval    and a service completion occurs 
in the interval   , where  and  represent lim→ 
  and lim→  , respectively. On the other 
hand, a potential arrival takes place in the interval    and 
a service completion occurs in the interval    under the 
EAS model. For more details, see Hunter (1983) and Bruneel 
and Kim (1993)

The conventional supplementary variable technique (SVT) 
is known to be originated by Cox (1955), and has become 
one of the most frequently used approaches for both the con-
tinuous and discrete-time queuing systems. The method we 
use in the present work is a modified SVT, where the last 
step of the modified SVT is different from that of the con-
ventional SVT. The first step is to define a Markov chain by 
including appropriate supplementary variables into the state 
vector. The second step is to construct the steady state sys-
tem equations. The last step is to solve these equations. The 
last step of the conventional SVT is to obtain the probability 
generating functions (PGFs) of the number of customers in 
the system/queue by solving the system equations in the 
transform domain. On the other hand, the last step of the 
modified SVT is to directly sum each equation after multi-
plying a supplement variate. The result thus obtained is the 
steady state queue length distribution not expressed as the 
form of transformation but in terms of conditional expecta-
tions. In other words, we derive an exact transform-free ex-
pression for the steady state queue length distribution. This 
method is illustrated by the GI/G/1 queue with multiple vaca-
tions (for more definitions, see the following sections).

There have been several studies on the discrete-time queue 
with general interarrival times and general service times. For 
the standard GI/G/1 queue, see Murata and Miyahara (1991), 
who obtain the waiting time distribution under the assump-
tion that PFGs of the sojourn time distributions are repre-
sented as rational polynomials. Chaudhry (1993) also obtains 
closed-form expressions of waiting time distributions via a 
root-finding method. For the batch arrival GIX/G/1 queue, 
Chaudhry and Gupta (2001) present a procedure for comput-
ing waiting time probabilities and its PGF by analyzing the 
PGF of the unfinished work. For the finite waiting spaces 
queue, Haβlinger (1995) and Linwong et al. (2004) analyze 
the queue length distributions for the GI/G/1/K and GIX/G/ 
1/K queue, respectively. They use a polynomial factorization 
approach. The restriction of their approach is that the inter-
arrival time distribution, service time distribution, and batch 
size distribution should all be of finite support. For the in-
finite server GI/G/∞ queue, Eliazar (2008) analyzes the out-
put process and the queue process making use of the stat-
istical properties of the stochastic maps. The studies noted 
above are based on the transformation technique. As a con-
sequence, all their results are expressed as the transformed 
terms.

Addressing a continuous-time queue, Chae et al. (2004) 
present the transform-free queue length distribution for the 
GI/G/1/K queue with multiple vacations. They propose ob-
taining the queue length distribution by using the modified 
SVT. However, to the best of the author’s knowledge, there 
have been only one report on utilizing the modified SVT for 
the discrete-time queue. Chae et al. (2008) first apply the 
modified supplementary variable technique to the discrete- 
time GI/G/1/K queue without vacations. The purpose of this 
paper is to extend the work of Chae et al. (2008) considering 
not finite buffer but multiple vacations. In other words, this 
work shows the modified SVT for discrete-time queues with 
general interarrival times, general service times, and general 
vacation times.

The remainder of this paper is organized as follows. In 
Section 2, we analyze the queue length distribution of the 
discrete-time GI/G/1 queue with multiple vacations. In Section 
3, we propose a simple approximation, called a two-moment 
approximation, for the queue length distribution. The two- 
moment approximation for the continuous-time queue has 
been reported in the literatures Kim and Chae (2003) and 
Choi et al. (2005), but there is no precedent for the discrete- 
time queue. Numerical experiments are conducted to demon-
strate that our approximations are remarkably simple yet pro-
vide fairly good performance, especially for a Bernoulli ar-
rival process.

2. The Steady State Queue Length 
Distribution of a GI/G/1 Queue 
with Multiple Vacations

In this section, we derive a transform-free distribution of the 
steady state queue length in the LAS of the GI/G/1/MV queue, 
where MV stands for multiple vacations. In the multiple va-
cations model, the server leaves for a vacation if there is no 
customer to serve in the system at the end of a service. If the 
server returns from a vacation finding the system nonempty, 
it begins to serve the customers and continues serving until 
the system becomes empty again. If the server returns from a 
vacation finding the system empty, it leaves for another vaca-
tion, and repeats vacations in this manner until it returns from 
a vacation finding the system nonempty (see Takagi (1993)). 
Just like a service, a vacation is assumed to end in    and 
immediately after the arrival of a customer and to begin in 
   and immediately after a service completion. We fur-
ther assume that customers leave the system on a first-in first- 
out basis. Interarrival times, service times, and vacation times 
are independent and identically distributed random variables 
(R.V.s) denoted by the generic R.V.s A, S, and V, respectively.

Consider the Markov chain     
     ⋯, where   denotes the number of customers 
in the system at  and the supplementary variables  , 
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
 , and   respectively denote the remaining inter-

arrival time, the remaining service time, and the remaining 
vacation time all at . We define the probability mass func-
tions as follows:

       ⋯,
       ⋯,
        ⋯,

   lim

→∞
   

   
  ,

                 ≥       ⋯,

   lim

→∞
   

   
  

                 ≥       ⋯.

Let  
∞ ,  

∞ , and  
∞  denote the sequences 

of interarrival times, service times, and vacation times and 
they are mutually independent. By considering mutually ex-
clusive events that can occur during one slot, we construct 
the steady state system equations as follows :


  

 
 

  

  

   
     ≥









 (1a)


  

 
 

  


 
    


  

   
  

  


   

   
  

  
     ≥









(1b)

Due to    , one less equation is required. The left- 
hand sides of (1) represent the probabilities of the system 
state at  in a steady state. The right-hand sides of (1) 
are then expressed in terms of the probabilities of the system 
state at  in a steady state, together with the probabilities of 
all potential queueing activities that can happen during  
 . Notice that (1) is the difference equations, which corre-
spond to the differential equations in the continuous-time 
queue.

Remark 1 :      is the joint probability of three 
events when the server is busy (on vacation) in a steady state. 
One event is that the number of customers in the system is n 
at . Another event is that service (vacation) completion oc-
curs in    due to       . The other 
event is that arrival takes place in    due to   .

In the modified SVT, we first sum (1a), both over i and j, 
≤   ≤∞ and sum (1b) both over i and k, ≤  ≤∞. 
Then, we multiply i+1 to both sides of (1) and sum over i, j, 
and k, ≤   ≤∞. Finally, we multiply j+1 to both sides 
of (1a) and sum both over i and j, ≤   ≤∞, and then 
multiply k+1 to both sides of (1b) and sum both over i and k, 
≤  ≤∞.

Now, we apply above procedure to the model. We first 
sum (1a), both over i and j, ≤   ≤∞, and sum (1b) both 

over i and k, ≤  ≤∞. Simplifying the results (for more 
details, see Appendix A), we obtain




∞


   



∞


  



∞


   ≥ ,  (2a)




∞


   



∞


  



∞


  ≥ .      (2b)

In order to express (2) in terms of meaningful quantities, let 

  and   denote the probability that an arriving cu-

stomer sees n customers when the server is on vacation and 
when the server is busy, respectively. Likewise, let  de-
note the probability that a departing customer leaves behind 
n customers. Note that   . We verify that the arrival 
rate and departure rate are    and a stable system 
satisfies    .

Based on the assumption mentioned above, expressing (2) 
in terms of  ,  , and  leads to




  
 ≥ , (3)

which is known as the Burke’s theorem.
In order to express the results of the next procedure, we de-

fine the following probabilities and conditional expectations 
for ≥ :  

∞ 
∞ 

  ,  
∞


∞ 

   ,     ,    ,   
 

,   , and    , where  


  is the remaining service time (vacation time) at the 
arrival epoch of a customer who sees n customers in the sys-
tem and   is the remaining interarrival time at the 
departure epoch of a customer who leaves behind n custom-
ers in the system (at the epoch when the server completes its 
vacations, finding n customers in the system). Here, 
  and  .

Next, we multiply i+1 to both sides of (1a) and sum over i 
and j, ≤   ≤∞. Simplifying the results (for more de-
tails, see Appendix B), we obtain

 


∞


 

 


∞


  




∞


 

   ≥ 










    (4)

On the other hand, we multiply j+1 to both sides of (1a) 
and sum over i and j, ≤   ≤∞. Simplifying the results, 
we obtain




∞


 

 


∞


 



∞


   

 


∞


  



∞


  ≥ 










   (5)
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Remark 2 : 
∞ 

 
∞ 

    in (5) means the 
rate that the server takes vacations. By multiplying the ex-
pected length of a vacation time, 

∞ 
 

∞  

   becomes the long-run proportion of time the 

server is on vacation. Since  is not only the traffic intensity 
but also the long-run proportion of time that the server is 
busy,  becomes the long-run proportion of time that the 
server is on vacation.

Now, we want to express (4) and (5) in terms of identities , 

, and . For this, we introduce the next lemma :

Lemma 1 : In a steady state, the following relations hold :


 

∞ 
  , ≥ ,



 

∞ 
  

  , ≥ ,
 

 
∞ 

 


  , ≥ , 

and  
∞ 

   , ≥ .

Proof : See Appendix C. 󰋪
By utilizing the results of Lemma 1, we obtain the queue 

length equations of the GI/G/1/MV when the server is on va-
cation as follows :

Theorem 1 : The queue length distribution for GI/G/1/MV 
when the server is on vacation satisfies the following simul-
taneous equations:

  



  
 

 
 ≥ 










 (6)

  


  
  

 ≥ 
 (7)

Proof. 
∞ 

   is the rate (or the expected frequency 
per unit time) that an arriving customer sees n customers 
when the server is on vacation. Since  is the expected num-
ber of arrivals per unit time and   is the probability that 
an arriving customer sees n customers when the server is on 
vacation, we have the concrete result : 

∞ 
   



 . In addition,  
∞ 

    is the rate that 
a departing customer leaves behind n customers in the sys-
tem. Since  is also the expected number of departures per 
unit time and  is the probability that a departing customer 
leaves behind n customers in the system,  

∞


    

 should hold. Using Lemma 1, we can re-
write the results of (4) and (5) as (6) and (7).  󰋪

We then have the following transform-free expressions for 
the queue length distribution just before an arrival and at an 

arbitrary epoch when the server is on vacation, all in product 
forms.

Theorem 2 : The steady state queue length distribution for 
GI/G/1/MV when the server is on vacation is given by


 







  













 ≥ 










(8)

 







  


 ≥ 










 (9)

where     ,    , 

and  


 
 .

Proof : For each n, solving (6) and (7) simultaneously leads 
to (8). Finally, (9) is derived by combining (8) with either (6) 
or (7). 󰋪
Note that (8) is a similar form of the steady state queue 
length distribution of the birth and death process (see Wolff 
(1989)). The procedure of obtaining   and   is the 
same. Multiplying i+1 to both sides of (1b) and summing 
over i and k, ≤  ≤∞, we have

  


∞


 

 



∞


 



∞


 

 
  



∞


  

 




∞


 

  



∞


  




∞


 

   ≥ 










 (10)

Multiplying k+1 to both sides of (1b) and summing over i 
and k, ≤  ≤∞, we have

  


∞


 



∞


 




∞


 

  


∞


  



∞


 




∞


  



∞


  ≥ 










 (11)
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Expressing (10) and (11) by using Lemma 1, we obtain the 
queue length equations of the GI/G/1/MV when the server is 
busy as follows :

Theorem 3 : The queue length distribution for GI/G/1/MV 
when the server is busy satisfies the following simultaneous 
equations :

  
 




 
    (12)

                  
 


 ≥ 

  
 

    (13)
                  

 ≥ .

Proof : To simplify (10) and (11) meaningfully, we use the 
relations 

∞ 
   

  and then, we obtain (12) 
and (13). 

∞ 
   is the rate that an arriving custom-

er sees n customers when the server is busy servicing. Since 
 is the expected number of arrivals per unit time and   
is the probability that an arriving customer sees n customers 
when the server is busy, we have the concrete result : 

∞


    

 . Using Lemma 1 and the fact that 
∞  


    

 , we can rewrite the results of (10) and 
(11) as (12) and (13), respectively. 󰋪

We finally have the following transform-free expressions 
for the queue length distribution just before an arrival and at 
an arbitrary epoch when the server is busy, all in product 
forms.

Theorem 4 : The steady state queue length distribution for 
GI/G/1/MV when the server is busy is given by


  

 







  ≥ , (14)

  


 
  ≥ , (15)

where    ,   ,

 

 


 



×








 


 



,


 

  

   ,

and  
 










 




.

Proof : For each n, solving (12) and (13) simultaneously leads 
to (14). Finally, (15) is derived by combining (14) with either 
(12) or (13). 󰋪

Our results above are expressed in terms of , , , 
and , which are all conditional expectations of supple-
mentary variables. In general, they are not easy to compute, 

except for some special cases such as Bernoulli arrival, geo-
metric service times, or geometric vacation times. However, 
the availability of such expressions provides a basic idea for 
developing approximations for various performance meas-
ures of practical interest, which will be discussed in the fol-
lowing sections.

Remark 3 : These transform-free expressions for the discrete- 
time queues are not available in previous studies, although 
our method is intuitive and easy to follow. It is interesting to 
state that (9) and (15) in this work take the same forms as 
(12) and (18) in Chae et al. (2004) when  →∞. Specifi-
cally, the definitions of the conditional expectations  and 

 in this paper are slightly different from those in Chae et 

al. (2004), because    and    are not defined in 
the continuous-time queue but have positive probabilities in 
the discrete-time queue. Nonetheless, (9) and (15) in this 
work take exactly the same forms as (12) and (18) in Chae et 
al. (2004).

Remark 4 : Heuristic interpretations for Eqs. (6), (7), (12) and 
(13) can be found in the Chae et al. (2002). Here, we briefly 
explain the first equation in (6).   is the time-average 
probability that there is no customer in the system when the 
server is on vacation.  is the expected frequency that a 
departing customer leaves behind the empty system. And,  
is the expected remaining interarrival time when the system 
becomes empty. If the state of the server changes from 
“busy” to “on vacation”, there is no customer and the server 
leaves for vacations at the same time. Therefore,  is 
the long-run proportion of time that there is no customer in 
the system when the server is on vacation. Chae et al. (2002) 
explains the time-average probability of the queue length dis-
tribution for the continuous-time GI/G/c/K queue by using 
the tax collection examples. Nevertheless, we can apply their 
same interpretations for the queue length distribution to our 
results.

3. The Two-Moment Approximation 
for the Queue Length Distribution 
and Its Performance

Based on the expressions given in Section 2, we now propose 
a simple two-moment approximation for the steady state 
queue length distribution through approximation of , , 
, and . From this, approximations for several perform-
ance measures can also be obtained. We employ the follow-
ing approximation scheme for ≥  :



On the Modified Supplementary Variable Technique for a Discrete-Time GI/G/1 Queue with Multiple Vacations 309


 

≈ 
 

≈ 
 

≈ 
 










 (16)

where   is the second moment of any discrete R.V. Y 
with a distribution function F, and   ± is 
the mean of the equilibrium distribution of F.

Remark 5 : In our setting, the remaining interarrival time of a 
customer both at a service completion epoch and at a vaca-
tion termination epoch does not contain 0. In contrast, both 
the remaining service time and the remaining vacation time 
at a customer arrival epoch contain 0. Therefore, in terms of 
the discrete-time inspection paradox, , , , and  can 
approximate  ,  , and  , respectively.

Applying (16) to (8), (9), (14), and (15), we obtain two- 
moment approximations for the steady state queue length dis-
tribution as follows :


≈





≈


 



 ≥ 

≈




≈
 ≥ 


≈

 




  ≥ 

≈
 

  ≥ 










 (17)

where   ,    ,    
 , 

 ,  ,  
 , 


  , and   



 . Note that (16) is 

exact for the Bernoulli arrival process, geometric service 
times, and geometric vacation times in the LAS, respectively, 
due to the memoryless property of the geometric distribution. 
Therefore, our approximations in (17) lead to the exact queue 
length distribution for the Geo/Geo/1/GMV queue, where 
GMV stands for geometric multiple vacations. Similar ap-
proximations to those proposed in (17) have been used to ap-
proximate a continuous-time queue by Kim and Chae (2003) 
and Choi et al. (2005). For some range of parameter values, 
(17) may result in negative probabilities. In such a case, one 
can set those approximate values to zero.

From (17), approximations of various mean performance 
measures can be obtained, such as approximations for the 
mean numbers of customers in service, in the queue, and in 
the entire system. Subsequently, approximations for the mean 

time a customer spends in the queue and in the system also 
follow from Little’s formula. Among others, we present the 
approximate value for the mean of customers in the entire sys-
tem, denoted by . From (6), (7), (12), and (13), we have

   


∞




∞

 ,  (18)

                  


∞

,

  


∞




∞

    (19)

                  


∞

  .

Combining (18) and (19) with (16) yields

≈


∞ 




∞ 




 ,    (20)

where   and   are approximate values for   
and  , respectively.

To evaluate the performance of our approximation, exten-
sive numerical experiments have been carried out for a varie-
ty of interarrival times, service times, and vacation times, but 
only a few that exhibit representative information are pre-
sented in <Table 1> through <Table 3>. In all cases, exact 
values are calculated by differentiating the PGFs of each 
queue length distribution or carrying out simulation experi-
ments.  denotes a 2-Negative binomial distribution and 
 denotes a mixed-geometric distribution of order 2.

<Table 1> presents results for  and  of several Ber-
noulli arrival queues with GMV in low ( ) traffic, in 
moderate (  ) traffic, and high (  ) traffic, respec-
tively. Through our numerical investigations, we have obser-
ved that our results closely match the exact results regardless 
of the traffic intensities. <Table 2> shows results of the case 
of Bernoulli arrival queues with general multiple vacations. 
Interestingly, our approximation functions well even though 
vacation times do not have geometric distributions.

Table 1.  and  for  queues



0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .6818 .6818 .4167 .4167 .1923 .1923
 .2514 .2514 .2604 .2604 .2504 .2504
 .0544 .0544 .1411 .1411 .1901 .1901
 .0102 .0102 .0601 .0601 .1291 .1291
 .0018 .0018 .0238 .0238 .0845 .0845
 .0003 .0003 .0091 .0091 .0547 .0547
 .4000 .4000 .9000 .9000 2.400 2.400
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


0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .6818 .6818 .4167 .4617 .1923 .1923
 .2483 .2490 .3204 .3241 .2380 .2443
 .0562 .0552 .1532 .1502 .1836 .1826
 .0112 .0112 .0652 .0635 .1278 .1248
 .0021 .0023 .0266 .0264 .0863 .0838
 .0004 .0005 .0107 .0110 .0576 .0563
 .4050 .4050 1.030 1.030 2.535 2.535




0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .6818 .6818 .4167 .4617 .1923 .1923
 .2655 .2645 .3781 .3706 .3258 .3056
 .0454 .0471 .1430 .1532 .2193 .2346
 .0063 .0059 .0446 .0447 .1244 .1334
 .0008 .0006 .0128 .0114 .0665 .0686
 .0001 .0001 .0035 .0027 .0347 .0339
 .3792 .3792 0.875 0.875 1.838 1.838

Table 2.  and  for   queues
 


0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .5357 .5357 .2778 .2778 .1136 .1136
 .2994 .3000 .2908 .2932 .1764 .1801
 .1119 .1113 .1958 .1945 .1722 .1728
 .0367 .0367 .1135 .1121 .1444 .1431
 .0114 .0114 .0609 .0604 .1123 .1106
 .0034 .0035 .0313 .0313 .0836 .0821
 .7050 .7050 1.630 1.630 3.435 3.435




0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .4903 .4963 .2428 .2513 .0966 .1025
 .3037 .2982 .2712 .2705 .1565 .1616
 .1293 .1266 .1976 .1913 .1606 .1587
 .0491 .0494 .1248 .1208 .1415 .1373
 .0178 .0186 .0734 .0721 .1154 .1115
 .0063 .0069 .0414 .0416 .0897 .0870
 .8346 .8346 1.889 1.889 3.824 3.824

 


0.25 0.50 0.75

Ours Exact Ours Exact Ours Exact
 .5882 .5813 .3226 .3107 .1370 .1278
 .2876 .2969 .3088 .3184 .1998 .2033
 .0910 .0914 .1868 .1931 .1820 .1885
 .0249 .0234 .0970 .0975 .1431 .1465
 .0063 .0055 .0466 .0451 .1056 .1055
 .0015 .0012 .0214 .0200 .0744 .0734
 .5800 .5800 1.380 1.380 3.060 3.060

The results for the non-Bernoulli arrival queues are ap-
pended in Table 3. In this case, however, approximations can 
deteriorate. Thus, one should use the approximations cau-
tiously for non-Bernoulli arrival queues. Note that our ap-
proximations do not require the whole distributions of A, S, 
and V, but only the first two moments. The first two mo-
ments alone will lead to quick and simple approximate 
results.

Table 3.  for  queues


 0.2 0.4 0.6 0.8


Exact
Ours

.3063

.2750
.5977
.5667

1.153
1.150

2.788
2.900



 0.2 0.4 0.6 0.8


Exact
Ours

.3298

.3583
.7389
.7889

1.596
1.650

4.234
4.233



 0.2 0.4 0.6 0.8


Exact
Ours

.3022

.2656
.5312
.5167

.8516

.9813
1.823
2.300



 0.2 0.4 0.6 0.8


Exact
Ours

.3143

.3438
.6261
.7111

1.213
1.388

3.092
3.300

Remark 6 : One may consider 
∞  , where  is the 

approximate value for . From (6) and (12), 
∞  can 

be written as 
∞ 


∞ 

 . For Bernoulli 
arrival queues, 

∞   holds due to 
∞ 

  

 and 
∞ 

  . For non-Bernoulli arrival queues, 
however, 

∞   does not hold. In this case, we ap-
proximate  to 

∞  by normalization. 
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4. Conclusions

This paper aimed at analyzing a discrete-time GI/G/1 queue 
with multiple vacations and making a two-moment approx-
imation of the mean queue length and the probabilities of the 
number of customers in the system for that queue. To this 
end, we derived a transform-free steady state queue length 
distribution,   and  . The transform-free queue 
length distribution for other vacation models, such as the sin-
gle vacation model and set-up time model, can be derived by 
the modified SVT.

Note again that our approximation is especially useful 
when distributions of A, S, and V are unknown and have to be 
estimated, since our methods do not require fitting dis-
tributions to sample data but only require that the first two 
moments be obtained. On this basis, the approximation pro-
cedure is simple and quick. We anticipate that our two-mo-
ment approximation will be beneficial to those practitioners 
who seek simple and quick practical answers to queueing 
systems with multiple vacations.

Finally, it is noted that the modified SVT is basically the 
same as the conventional SVT except that in the last step of 
solving system equations. We multiply a supplementary var-
iate i+1, j+1, and k+1 and then sum over both i, j, and k. As a 
result, we obtained the simultaneous equations for the queue 
length probabilities in terms of conditional expectations of 
the supplementary variables. We believe that our approach 
will help the readers better understand discrete-time queue-
ing systems and gain new insight into their analyses.
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<Appendix A> Derivation of the Results in (2)

We first sum the first equation in (1a), both over i and j, ≤   ≤∞, we have




∞


   



∞


 



∞

  


∞

. (A.1)

The left hand side of (A.1) is split into four terms as following :


 



∞


 



∞


  



∞


  . (A.2)

The right hand side of (A.1) is simplified as following :




∞


 



∞


 



∞


   .       (A.3)

Thus, we have




∞


  

 


∞


  .       (A.4)

Applying the same procedure the rest of equations of (1), we get the following relations :


 

∞

  
   

 
  

∞


 

 

∞


 


 

∞


   

 

∞


   

  

∞


 

  

∞


 


  

∞


  

 

∞


   

  

∞

  
  

 

∞

  
  

  

∞


   

  










 (A.5)

By recursively solving (A.4) and (A.5), we finally get the results in Eq. (2).

<Appendix B> Derivation of the Results in (4)

We will show the derivation of the second equation in (4), and , nonetheless, we can prove the results of Eqs. (5), (10), and 
(11) by using the same procedure.

We multiply i+1 to the left hand side of (1a) and sum over i and j, ≤   ≤∞ and we have




∞


   



∞


  



∞


  



∞






∞


 , ≥ . (B.1)

We multiply i+1 to the right hand side of (1b) and sum over i and j, ≤   ≤∞ and we have




∞


 



∞


  



∞

 


∞


 



∞


  , ≥ .    (B.2)

Equalizing (B.1) and (B.2), we have

 


∞


  



∞


 



∞


  



∞


 

  , ≥ . (B.3)

Applying the similar procedure to (1b), we finally get the results of (5), (10), and (11). 
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<Appendix C> Proof of Lemma 1

By the definition of , it is expressed as   lim →∞   , where  denotes the event that the va-
cation will end during   . Therefore, we have
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In a similar manner in (B.1), we can prove other relations in Lemma 1 but we here omit their proofs.




