DOI QR코드

DOI QR Code

Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape

원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가

  • Ahn, Jin Hee (Dept. of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Nam, Dong Kyun (Dept. of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Won Hong (Dept. of Civil Engineering, Gyeongnam National University of Science and Technology) ;
  • Huh, Jungwon (Dept. of Ocean and Civil Engineering, Chonnam National University) ;
  • Kim, In Tae (School of Urban, Architecture and Civil Engineering, Pusan National University)
  • 안진희 (경남과학기술대학교, 토목공학과) ;
  • 남동균 (경남과학기술대학교, 토목공학과) ;
  • 이원홍 (경남과학기술대학교, 토목공학과) ;
  • 허정원 (전남대학교 해양토목공학과) ;
  • 김인태 (부산대학교, 건설융합학부 토목공학전공)
  • Received : 2015.08.27
  • Accepted : 2016.04.19
  • Published : 2016.08.27

Abstract

For a steel structure with long service period, structural performance can be changed or decreased by corrosion damage occurred under severe corrosion environment condition. In this study, to examine compressive strength and behavior of circular steel member depending on corrosion damage, compressive loading tests were conducted using circular steel member with artificial corrosion damage which was applied by mechanical process and hand drill. From test results, local corrosion area and pattern is related to their structural performance. Their lcoal bucklings were occurred near artificially sectional damaged part. Reduction in compressive strength of circular steel member was also suggested according to their corroded part and damage.

극심한 대기부식 환경에 설치된 강구조물은 사용기간 증가에 따라 발생한 부식손상에 따라 구조성능의 변화나 감소가 발생할 수 있다. 본 연구는 부식손상 특징에 따른 강관부재의 압축강도 성능 변화를 평가하기 위하여 강관 시험체에 인위적인 부식손상을 도입한 후 압축강도 평가시험을 통하여 부식손상에 따른 압축강도 변화 및 거동변화를 평가하였다. 부식손상의 경우 단면에 대한 국부적인 부식손상의 형태 및 위치의 영향이 있는 것으로 평가되었으며, 국부부식 위치와 부식손상으로 인한 단면이 변화부 주위에서 국부 변형에 의한 파괴가 발생하는 것으로 분석되었다. 또한 본 연구결과를 통하여 부식의 분포 및 부식의 손상량에 따른 강관부재의 압축강도 변화관계를 부식손상량에 따라 평가할 수 있도록 제시하였다

Keywords

References

  1. 김인태, 신창희, 정지영(2010) 부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구, 한국강구조학회논문집, 한국강구조학회, Vol.22, No.5, pp.421-433. Kim, I.T., Shin, C.H., and Cheung, J.Y. (2010) A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.5, pp.421-433 (in Korean)
  2. Nagai, M. and Miyashita, T. (2009) Recent Topics on Steel Bridge Engineering in Japan-Design and Maintenance. Proceeding of the 10th Korea-China-Japan symposium on steel structures, Korea Society of Steel Construction pp.65-76.
  3. National Institute for land and Infrastructure management (2006) Research on Local Corrosion of Highway Steel Bridges, Technical note of National Institute for land and Infrastructure management, No.294 (in Japanese).
  4. Timothy, E., Dunbar, Neil Pegg, Farid Taheri, Lei Jiang (2004) A Computational Investigation of the Effects of Localized Corrosion on Plates and Stiffened Panels, Marine Structures, Vol.17, Issue.5, pp.385-402. https://doi.org/10.1016/j.marstruc.2004.08.012
  5. Duo, Ok, Yongchang, Pu., and Atilla Incecik (2007) Computation of Ultimate Strength of Locally Corroded Unstiffened Plates Under Uniaxial Compression, Marine Structures, Vol.20, Issues.1-2, pp.100-114. https://doi.org/10.1016/j.marstruc.2007.02.003
  6. Rahgozar, R. (2009) Remaining Capacity Assessment of Corrosion Damaged Beams Using Minimum Curves, Journal of Constructional Steel Research, Vol.65, Issue.2, pp.299-307. https://doi.org/10.1016/j.jcsr.2008.02.004
  7. Silva, J.E., Garbatov, Y., and Guedes Soares, C. (2013) Ultimate Strength Assessment of Rectangular Steel Plates Subjected to A Random Localised Corrosion Degradation, Engineering Structures, Vol.52, pp.295-305. https://doi.org/10.1016/j.engstruct.2013.02.013
  8. 김인태, 장홍주, 정지영(2010) 가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구, 한국강구조학회논문집, 한국강구조학회, Vol.22, No.5, pp.399-409. Kim, I.T., Chang, H.J., and Cheung, J.Y. (2010) An Experimental Study on the Evaluation of Residual Tensile Load-Carrying Capacity of Corroded Steel Plates of Temporary Structure, Journal of Korean Society of Steel Construction, KSSC, Vol.22, No.5, pp.399-409 (in Korean).
  9. 김인태, 이명진, 신창희(2011) 부식 손상된 가시설 강재의축압축 좌굴강도 추정에 관한 실험적 연구, 구조물진단학회지, 한국구조물유지관리공학회, Vol.15, No.6, pp.135-146. Kim, I.T., Lee, M.J., and Shin, C.H. (2011) An Experimental Study on Evaluation of Axially Compressive Buckling Strength of Corroded Temporary Steel, Journal of the Korea Institute for Structural Mainternance and Inspection, Korea Institute for Structural Mainternance and Inspection, Vol.15, No.6, pp.135-146 (in Korean).
  10. (財)沿岸開発技術センター編 (1997), 港湾鋼構造物 防食.補修 マニュアル(改訂版)(財) Coastal development technology center compilation (1997), Harbor steel structures corrosion protection repair manual (revised edition) (in Japanese).
  11. 阿部正美 (2002), 海洋鋼構造物の腐食と防食対策, (社) 日本防錆技術協会. Masami ABE (2002) Corrosion and Corrosion Protection Measures for Marine Steel Structures, (社) Japan anticorrosion Technology Association (in Japanese).

Cited by

  1. Residual compressive strength of inclined steel tubular members with local corrosion vol.59, 2016, https://doi.org/10.1016/j.apor.2016.07.002
  2. Evaluation of Residual Compressive Strength and Behavior of Corrosion-Damaged Carbon Steel Tubular Members vol.11, pp.7, 2018, https://doi.org/10.3390/ma11071254
  3. 단부에 국부부식이 발생한 용접 원형 강관의 잔존 압축 강도 평가 vol.30, pp.3, 2016, https://doi.org/10.7781/kjoss.2018.30.3.145
  4. 초음파 속도법을 활용한 강판의 두께 변화 탐지를 위한 기초연구 vol.24, pp.6, 2016, https://doi.org/10.11112/jksmi.2020.24.6.146