DOI QR코드

DOI QR Code

A Smart Damper Using Magnetic Friction And Precompressed Rubber Springs

자력 마찰과 기압축 고무 스프링을 이용한 스마트 댐퍼

  • Received : 2015.12.28
  • Accepted : 2016.04.19
  • Published : 2016.08.27

Abstract

This study proposes a new technology for a smart damper with flag-shaped behavior using the combination of magnetic friction and rubber springs. The magnet provides friction and, thus, energy dissipation, and the rubber springs with precompression contribute to present self-centering capacity of the damper. To verify their performance, this study conducts dynamic tests of magnet frictional dampers and precompressed rubber springs. For the purpose, hexahedron Neodymium (NdFeB) magnets and polyurethane rubber cylinders are used. In the dynamic tests, loading frequency varies from 0.1 to 2.0 Hz. The magnets provide almost perfect rectangular behavior in force-deformation curve. The rubber springs are tested without or with precompression. The rubber springs show larger rigid force with increasing precompression. Lastly, this study discusses combination of rigid-elastic behavior and friction to generate 'flag-shaped' behavior for a smart damper and suggests how to combine the magnets and the rubber springs to obtain the flag-shaped behavior.

이 연구에서는 고무 스프링과 자력마찰을 조합한 스마트 댐퍼의 동적 실험을 수행하여 스마트 댐퍼의 깃발모양 (flag-shaped) 거동을 확인하고자 하였다. 스마트 댐퍼 동적실험을 수행하기 위하여, 네오디뮴 (NdFeB) 자석을 사용하였으며 $50mm{\times}50mm{\times}25mm$ ($B{\times}L{\times}H$)의 크기를 사용하였다. 또한 폴리우레탄 고무를 사용하였으며 길이 80mm 외경 80mm 내경 20mm의 크기의 원주형 고무스프링을 사용하였다. 동적 실험에서 자석의 개수와 진동수를 제어하여 수행하였으며, 자석의 개수는 0, 4, 8, 12개의 순서로 증가하였으며, 이는 자력 마찰력이 증가함을 의미하였다. 진동수는 0.1부터 2.0Hz까지 증가시키면서 진행하였다. 실험의 진행은 고무 스프링이 장착되지 않은 자력마찰 댐퍼의 자력 마찰력 평가 실험, 고무 스프링의 기압축량 평가 실험 및 최종적으로 자력 마찰력과 기압축 고무스프링이 합성된 스마트 댐퍼의 동적 실험 순서로 진행하였다. 실험 결과를 통하여 스마트 댐퍼의 깃발모양 거동을 평가하고 에너지 소산능력, 감쇠비를 평가하여 스마트 댐퍼로서의 성능을 확인하였다.

Keywords

References

  1. Skinner, R.I., Robinson, W.H., and McVerry, G.H. (1993) An Introduction to Seismic Isolation, John Wiley and Sons Ltd, Chichester, England.
  2. Katsaras, C, Panagiotakos, T.B., and Kolias, B. (2008). Restoring Capability of Bilinear Hysteretic Seismic Isolation Systems, Earthquake Engineering and Structural Dynamics, Vol.37, pp.557-575. https://doi.org/10.1002/eqe.772
  3. Kawashima, K., macRae, G.A., Hoshikuma, J., and Kazuhiro, N. (1998) Residual Displacement Response Spectrum, Journal of Structural Engineering, ASCE, Vol.124, No.5, pp.523-530. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(523)
  4. Cardone D. (2012) Re-Centering Capability of Flag- Shaped Seismic Isolation Systems, Bulletin of Earthquake Engineering, Vol.10, pp.1267-1254. https://doi.org/10.1007/s10518-012-9343-1
  5. Christopoulos, C., Filiatrault, A., and Folz, B. (2002) Seismic Response of Self-Centering Hysteretic SDOF Systems, Earthquake Engineering and Structural Dynamics, Vol.31, pp.1131-1150. https://doi.org/10.1002/eqe.152
  6. Dolce, M., Cardone, D., and Marnetto, R. (2000) Implementation and Testing of Passive Control Devices Based on Shape Memory Alloys, Earthquake Engineering and Structural Dynamics, Vol 29, pp.945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
  7. Lin, Y.C., Sause, R., and Ricles, J. (2013) Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests, Journal of Structural Engineering, ASCE, Vol.139, No.7, pp.1227-1236. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000661
  8. Kim, H.J. (2012) Seismic Response of Flag-Shaped Hysteretic SDOF Systems with Seismic Fuses, International Journal of Steel Structures, Vol.12, No.4, pp.523-535. https://doi.org/10.1007/s13296-012-4006-2
  9. Kim, H.J. and Christopulos, C. (2009) Numerical Models and Ductile Ultimate Deformation Response of Post-Tensioned Self-Centering Moment Connections, Earthquake Engineering and Structural Dynamics, Vol.38, pp.1-21. https://doi.org/10.1002/eqe.836
  10. Choi, E., Choi, G., Kim, T.H., and Youn, H. (2015) Smart Damper Using the Combination of Magnetic Friction and Pre-Compressed Rubber Springs, Journal of Sound and Vibration, Vol.351, pp.68-89. https://doi.org/10.1016/j.jsv.2015.04.028

Cited by

  1. Measurement of Bolt Tension of Friction Damper Using Manufactured Load Cell vol.31, pp.3, 2019, https://doi.org/10.7781/kjoss.2019.31.3.171