DOI QR코드

DOI QR Code

가변안내깃 설치각이 다단 축류압축기 성능에 미치는 영향

Effects of Variable Guide Vane Setting Angle on the Performance of Multi-Stage Axial Compressor

  • Park, JunYoung (Department of Extreme Energy Systems, Korea Institute of Machinery and Materials) ;
  • Seo, JeongMin (Department of Extreme Energy Systems, Korea Institute of Machinery and Materials) ;
  • Lim, HyungSoo (Department of Extreme Energy Systems, Korea Institute of Machinery and Materials) ;
  • Choi, Bumseok (Department of Extreme Energy Systems, Korea Institute of Machinery and Materials) ;
  • Choi, Taewoo (Power Systems R&D Center, Hanwha Techwin) ;
  • Choi, Jaeho (Power Systems R&D Center, Hanwha Techwin)
  • 투고 : 2016.06.10
  • 심사 : 2016.07.14
  • 발행 : 2016.10.01

초록

일반적으로 다단 축류압축기는 부분 부하 조건에서 충분한 운전영역을 확보하기 위해 가변안내깃을 이용한다. 본 연구에서의 해석대상인 다단 축류압축기는 입구에서의 안내깃과 함께 1단과 2단 정익을 가변안내깃으로 하여 운전영역을 확보한다. 따라서 본 연구에서는 정격회전수의 70%와 90% 회전수 조건에서의 가변안내깃의 설치각이 다단 축류압축기의 성능에 미치는 영향에 대해 조사하였다. 다단 축류압축기의 성능은 3차원 정상상태 및 비정상상태 수치해석을 이용하여 확보하였다. 각 해석기법을 통해 확보한 결과를 비교하였으며 내부유동장의 특성을 파악하였다.

Generally the variable guide vane is used to secure the sufficient operating point in the off-design condition. In this study the inlet guide vane, 1st and 2nd stators in a multi-stage axial compressor are movable to obtain the operating range. So the effects of variable guide vane setting angle on the performance of 2.5 stage axial compressor were investigated at 70 % and 90 % conditions of nominal rotating speed in this paper. The steady-state and unsteady numerical analyses were conducted at each operating condition. The performance map, lost efficiency and flow fields were compared.

키워드

참고문헌

  1. Denton, J., "The Calculation of Three Dimensional Viscous Flow Through Multistage Turbomachines," Journal of Turbomachinery, Vol. 114, pp. 18-26, 1992. https://doi.org/10.1115/1.2927983
  2. Erdos, J.I., Alzner, E. and MacNally, W., "Numerical Solution of Periodic Transonic Flow through a Fan Stage," AIAA Journal, Vol. 15, No. 11, pp. 1559-1568, 1977. https://doi.org/10.2514/3.60823
  3. Rai, M.M., "Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and Overlaid Grids," Journal of Propulsion and Power, Vol. 3, No. 5, pp. 387-396, 1987. https://doi.org/10.2514/3.23003
  4. Rai, M.M. and Madavan, N.K. "Multi-Airfoil Navier-Stokes Simulations of Turbins Rotor-Stator Interaction," Journal of Turbomachinery, Vol. 112, pp. 377-384, 1990. https://doi.org/10.1115/1.2927670
  5. Madavan, N.K., Rai, M.M. and Gavali, S., "Multipassage Three-Dimensional Navier-Stokes Simulation of Turbine Rotor-Stator Interaction," Journal of Propulsion and Power, Vol. 9, No. 3, pp. 389-396, 1993. https://doi.org/10.2514/3.23634
  6. He, L. and Ning, W., "Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines," AIAA Journal, Vol. 36, No. 11, pp. 2005-2012, 1998. https://doi.org/10.2514/2.328
  7. Vilmin, S., Hirsch, Ch., Lorrain, E. and Swoboda, M., "Unsteady Flow Modeling across the Rotor/Stator Interface Using the Nonlinear Harmonic Method," ASME Turbo Expo 2006, Barcelona, Spain, GT2006-90210, May 2006.
  8. Numeca International, "User Manual FINE$^{TM}$/Turbo v9.1"
  9. Spalart, P. and Allmaras, S., "A One Equation Turbulence Model for Aerodynamic Flows," 30th Aerospace Science Meeting and Exhibit, Reno, N.V., U.S.A., AIAA 92-0439, Jan. 1992.
  10. Denton, J., "Loss Mechanisms in Turbomachines," Journal of Turbomachinery, Vol. 115, No. 4, pp. 621-656, 1993. https://doi.org/10.1115/1.2929299
  11. Denton, J. and Pullan, G., "A Numerical Investigation into the Sources of Endwall Loss in Axial Flow Turbines," ASME Turbo Expo 2012, Copenhagen, Denmark, GT2012-69173, June 2012.
  12. Yoon, S., Vandeputte, T., Mistry, H., Ong, J., and Stein, A., "Loss Audit of Turbine Stage," ASME Turbo Expo 2015, Montreal, Quebec, Canada, GT2015-43349, June 2015.
  13. Denton, J., "Some Limitations of Turbomachinery CFD," ASME Turbo Expo 2010, Glasgow, UK, GT2010-22540, June 2010.