DOI QR코드

DOI QR Code

곡면 벽을 지나는 고아음속 공동 유동에서 발생하는 압력 진동에 관한 연구

A Study on the Pressure Oscillations in the High-Subsonic Cavity Flows over a Curved Wall

  • Ye, A Ran (Department of Mechanical Engineering, Andong National University) ;
  • Lee, Ik In (Department of Mechanical Engineering, Andong National University) ;
  • Kim, Jeong Soo (Department of Mechanical Engineering, Pukyong National University) ;
  • Kim, Heuy Dong (Department of Mechanical Engineering, Andong National University)
  • 투고 : 2016.01.11
  • 심사 : 2016.09.13
  • 발행 : 2016.10.01

초록

종래, 직선벽상의 공동에서 발생하는 유동에 대한 많은 연구가 수행되어 왔다. 그러나 실제 공학적 응용에서 빈번하게 접하게 되는 곡선벽상의 공동 유동에 대한 연구는 찾아보기 드물다. 이러한 곡선 벽상에서는 강한 원심력의 효과가 발생하여 공동 유동에 영향을 미치게 되므로, 종래 직선 벽에서 발생하는 공동 유동과는 그 특성이 다를 것으로 예상되나, 이에 대한 구체적인 정보는 알려져 있지 않다. 본 연구에서는 유동의 마하수가 0.4에서 0.8까지의 고아음속 유동조건에서 곡선 벽 위의 공동 유동장을 수치해석적 방법으로 조사하였으며, 공동의 세장비(L/H)는 3.0으로 고정하였으나, 곡면의 곡률반경을 변화시켰다. 그 결과 곡선 벽의 공동에서 발생하는 압력진동이 직선 벽에 비하여 더 크며, 곡면의 곡률반경이 공동내부에서 발생하는 비정상 유동특성에 큰 영향을 미친다는 것을 알았다.

A considerable amount of researches has been performed to investigate the flow characteristics produced in the cavity system over straight wall. However, many practical applications of the cavity flows are found on curved walls, which are strongly subject to the centrifugal force effects. No work has been made on the cavity flows on the curved wall to date. In the present study, a computational fluid dynamics method has been applied to investigate the cavity flows over curved walls at Mach numbers in range of 0.4 to 0.8. The aspect ratio of the cavity was fixed at L/H=3, but the radius of curvature of the curved wall is changed in considering the real engineering practice. The results reveal that the pressure oscillations in the curved walls are stronger than those in the straight wall. It is found that the ratio of curvature of the curved wall significantly affects the unsteady flow characteristics inside the cavity.

키워드

참고문헌

  1. Rossiter, J.E., "Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds," Aeronautical Research Council Reports and Memoranda, No. 3438, 1964.
  2. Heller, H.H., Holmes, D.G. and Covert E.E., "Flow-Induced Pressure Oscillations in Shallow Cavities," Journal of Sound & Vibration, Vol. 18, No. 4, pp. 545-553, 1971. https://doi.org/10.1016/0022-460X(71)90105-2
  3. Rowley, C.W., Colonius, T. and Basu, A.J. "On Self-Sustained Oscillations in Two-Dimensional Compressible Flow over Rectangular Cavities," Journal of Fluid Mechanics, Vol. 455, pp. 315-346, 2002.
  4. Atvars, K., Knowles K., Ritchie, S.A. and Lawson, N.J., "Experimental and Computational Investigation of an 'Open' Transonic Cavity Flow," Proceedings of IMechE. Part G: Journal of Aerospace Engineering, Vol. 223, No. 4, pp. 357-368, 2009. https://doi.org/10.1243/09544100JAERO445
  5. Bilanin, A.J. and Covert, E.E., "Estimation of Possible Excitation Frequencies for Shallow Rectangular Cavities," AIAA Journal, Vol. 11, No. 3, pp. 347-351, 1973. https://doi.org/10.2514/3.6747
  6. Rockwell, D. and Naudascher E., "Review-Self Sustaining Oscillations of Flow Past Cavities," Journal of Fluids Engineering, Vol. 100, No. 6, pp. 152-165, 1978. https://doi.org/10.1115/1.3448624
  7. Stallings, R.L. and Wilcox, F.J., "Experimental Cavity Pressure Distributions at Supersonic Speeds," NASA TP-2683, 1987.
  8. Gharib, M. and Roshko, A., "The Effect of Flow Oscillations on Cavity Drag," Journal of Fluid Mechanics, Vol. 177, pp. 501-530, 1987. https://doi.org/10.1017/S002211208700106X
  9. Zhang, X., "Compressible Cavity Flow Oscillation Due to Shear Layer Instabilities and Pressure Feedback," AIAA Journal, Vol. 33, No. 8, pp. 1404-1411, 1995. https://doi.org/10.2514/3.12845
  10. Zhang, X., Rona, A. and Edwards, J.A., "The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer," The Aeronautical Journal, Vol. 102, No. 1013, pp. 129-136, 1998.
  11. Lee, Y.K., Kang, M.S., Kim, H.D. and Setoguchi T., "Passive Control Techniques to Alleviate Supersonic Cavity Flow Oscillation," Journal of Propulsion and Power, Vol. 24, No. 4, pp. 697-703, 2008 https://doi.org/10.2514/1.30292
  12. Ye, A.R., Das, R. and Kim, H.D., "Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall(1. Steady Flow Characteristics)," Transactions of the Korean Society of Mechanical Engineers B, Vol. 39, No. 3, pp. 231-236, 2015. https://doi.org/10.3795/KSME-B.2015.39.3.231
  13. Ye, A.R., Das, R. and Kim, H.D., "Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall(2. Unsteady Flow Characteristics)," Transactions of the Korean Society of Mechanical Engineers B, Vol. 39, No. 6, pp. 477-483, 2015. https://doi.org/10.3795/KSME-B.2015.39.6.477
  14. Zhang, X. and Edwards, J.A., "Experimental Investigation of Supersonic Flow over Two Cavities in Tandem," AIAA Journal, Vol. 30, No. 5, pp. 1182-1190, 1992. https://doi.org/10.2514/3.11049