DOI QR코드

DOI QR Code

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran (Faculty of Mechanical Engineering, University of Maragheh) ;
  • Shelesh-Nezhad, Karim (Plastics and Composites Engineering Center, Department of Mechanical Engineering, University of Tabriz) ;
  • Rezaei, Abbas (Faculty of Mechanical Engineering, University of Maragheh)
  • 투고 : 2016.05.19
  • 심사 : 2016.10.07
  • 발행 : 2016.06.25

초록

In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

키워드

참고문헌

  1. Afshar, A., Massoumi, I., Lesan Khosh, R. and Bagheri, R. (2010), "Fracture behavior dependence on loadbearing capacity of filler in nano and microcomposites of polypropylene containing calcium carbonate", Mater. Des., 31(2), 802-807. https://doi.org/10.1016/j.matdes.2009.07.054
  2. Agrawal, P., Oliveira, S.I., Araujo, E.M. and Melo, T.J.A. (2007), "Effect of different polypropylenes and compatibilizers on the rheological, mechanical and morphological properties of nylon 6/PP blends", J. Mater. Sci., 42(13), 5007-5012. https://doi.org/10.1007/s10853-006-0514-9
  3. Arao, Y. Suzuki, H. Yumitori, S. Tanaka, T., Tanaka, K. and Katayama, T. (2012), "Hybrid effects on mechanical properties of injection molded nano-hybrid composites", 15th European Conference On Composite Materials, Venice, Italy, June.
  4. Bhuiyan, Md. A., Pucha, R.V., Worthy, J., Karevan, M. and Kalaitzidou, K. (2013), "Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments", Compos. Struct., 95, 80-87. https://doi.org/10.1016/j.compstruct.2012.06.025
  5. Bryce, D.M. (1997), Plastic Injection Molding, Society of Manufacturing Engineers, Michigan, USA.
  6. Charifou, R., Gouanve, F., Fulchiron, R. and Espuche, E. (2015), "Polypropylene/layered double hydroxide nanocomposites: Synergistic effect of designed filler modification and compatibilizing agent on the morphology, thermal, and mechanical properties", J. Polymer Sci., Part B (Polymer physics), 53(11), 782-794. https://doi.org/10.1002/polb.23695
  7. Hudgin, D.E. (2006), Plastics Technology Handbook, CRC, London, England.
  8. Fu, S.Y., Feng, X.Q., Lauk, B. and Mai, Y.W. (2008), "Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites", Composites: Part B, 39(6), 933-961.
  9. Folkes, M.J. (1982), Short Fiber Reinforced Thermoplastics, John Wiley and Sons, New York, USA.
  10. Fu, S.Y., Lauke, B. and Mader, E. (2000), "Tensile properties of short-glass-fiber and short-carbon-fiber reinforced polypropylene composites", Compos. Part A: Appl. Sci. Manufacturing, 31(10), 1117-1125. https://doi.org/10.1016/S1359-835X(00)00068-3
  11. Hufenbach, W., Stelmakh, A., Kunze, K., Bohm, R. and Kupfer, R. (2012), "Tribo-mechanical properties of glass fiber reinforced polypropylene composites", Tribology Int., 49, 8-16. https://doi.org/10.1016/j.triboint.2011.12.010
  12. Ishak, Z.A.M., Chow, W.S. and Takeichi, T. (2008), "Enhancement of properties of PA6/PP nanocomposites via organic modification and compatibilization", Express Polym. Lett., 2(9), 655-664. https://doi.org/10.3144/expresspolymlett.2008.78
  13. Jahani, Y. (2011), "Comparison of the effects of mica, talc and chemical coupling on the rheology, morphology and mechanical properties of polypropylene composites", Polym. Adv. Technol., 22(6), 942-950. https://doi.org/10.1002/pat.1600
  14. Kemal, I., Whittle A., Burford, R., Vodenitcharova, T. and Hoffman, M. (2009), "Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate", Polymer, 50(16), 4066-4079. https://doi.org/10.1016/j.polymer.2009.06.028
  15. Lai, S.M., Chen, W.C. and Zhu X.S. (2009), "Melt mixed compatibilized polypropylene/clay nanocomposites, Part 1: the effect of compatibilizers on optical transmittance and mechanical properties", Compos. Part A: Appl. Sci. Manufacturing, 40(6), 754-765. https://doi.org/10.1016/j.compositesa.2009.03.006
  16. Leong, Y.W. and Mohd, Z.A. (2004), "Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites", Polym. Degrad. Stab., 83, 411-422. https://doi.org/10.1016/j.polymdegradstab.2003.08.004
  17. Lin, Y., Chen, H., Chan, C.M. and Wu, J. (2011), "Nucleating effect of calcium stearate coated CaCO3 nanoparticles on PP", Colloid Interface Sci., 345(2), 570-575.
  18. Mikesova, J., Slouf, M., Gohs, U., Popelkova, D., Vackova, T., Vu, N.H., Kratochvíl, J. and Zhigunov, A. (2014), "Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties", Polym. Bull., 71(4), 795-818. https://doi.org/10.1007/s00289-013-1093-y
  19. Phuong, N.T., Gilbert, V. and Chuong, B. (2008), "Preparation of recycled polypropylene/organophilic modified layered silicates nanocomposites Part I: The recycling process of polypropylene and the mechanical properties of recycled polypropylene/organoclay nanocomposites", Reinforced Plastic. Compos., 27, 1983-2000. https://doi.org/10.1177/0731684407086326
  20. Sachse, S., Gendre, L., Silva, F., Zhu, H., Leszczynska, A., Pielichowski, K., Ermini, V. and Njuguna, J. (2013), "On nanoparticles release from polymer nanocomposites for applications in lightweight automotive components", J. Physic., 429(1), 12046-12053.
  21. Shelesh-Nezhad, K. and Orang, H. (2013), "Crystallization, shrinkage and mechanical characteristics of polypropylene/CaCO3 nanocomposites", J. Thermoplastic Compos. Mater., 26(4) 544-554.
  22. Sun, L., Gibson, R.F., Gordaninejad, F. and Suhr, J. (2009), "Energy absorption capability of nanocomposites, A review", Compos. Sci. Technol., 69(14), 2392-2409. https://doi.org/10.1016/j.compscitech.2009.06.020
  23. Thomason, J.L. (2002), "The influence of fiber length and concentration on the properties of glass fiber reinforced polypropylene", Composites: Part A, 33, 1641-1652. https://doi.org/10.1016/S1359-835X(02)00179-3
  24. Xie, X.L., Liu, Q.X., Li, R.K.Y., Zhou, X.P., Zhang, Q.X., Yu, Z.Z. and Mai, Y.W. (2004), "Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization", Polymer, 45(19), 6665-6673. https://doi.org/10.1016/j.polymer.2004.07.045
  25. Yoshida, T., Ishiaku, U.S. and Okumura, H. (2006), "The effect of molecular weight on the interfacial properties of GF/PP injection molded composites", Compos. Part A: Appl. Sci. Manufacturing, 37(12), 2300-2306. https://doi.org/10.1016/j.compositesa.2006.02.019
  26. Zebarjad, S.M., Tahani, M. and Sajjadi, S.A. (2004), "Influence of filler particles on deformation and fracture mechanism of Isotactic polypropylene", Mater. Proc. Technol., 155-156, 1459-1464. https://doi.org/10.1016/j.jmatprotec.2004.04.187
  27. Zhang, Q.X., Yu, Z.Z., Xie X.L. and Maim, Y.W. (2004), "Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier", Polymer, 45(17), 5985-5994. https://doi.org/10.1016/j.polymer.2004.06.044
  28. Zokaei, S., Lesan Khosh, R. and Bagheri, R. (2007), "Study of scratch resistance in homo and copolypropylene filled with nanometric calcium carbonate", Mater. Sci. Eng., 445-446, 526-536. https://doi.org/10.1016/j.msea.2006.09.080

피인용 문헌

  1. Synergistic effect of the inclusion of glass fibers and halloysite nanotubes on the static and dynamic mechanical, thermal and flame retardant properties of polypropylene vol.5, pp.6, 2018, https://doi.org/10.1088/2053-1591/aac67d
  2. Effect of CaCO3 nanoparticles on the microstructure and fracture toughness of ceramic nanocomposites vol.14, pp.1, 2016, https://doi.org/10.1080/16583655.2020.1809840