DOI QR코드

DOI QR Code

iMBR 공정을 이용한 수산물가공폐수 처리에 관한 실증적 고찰

The Practical Study for the Treatment of Fish Processing Saline Wastewater Using Immersed MBR

  • 박성균 (현대엔지니어링 인프라환경사업부) ;
  • 이동준 (현대엔지니어링 인프라환경사업부)
  • Park, Seung Kyun (Division of Infrastructure Environmental, Hyundai Engineering Co., Ltd.) ;
  • Lee, Dong Jun (Division of Infrastructure Environmental, Hyundai Engineering Co., Ltd.)
  • 투고 : 2016.06.14
  • 심사 : 2016.08.12
  • 발행 : 2016.09.30

초록

본 연구는 실제 운영되는 수산물 가공 산업폐수의 immersed MBR (iMBR)공정을 이용한 폐수처리시설 운영 결과에 대한 실증적 고찰을 수행한 것이다. 수산물 가공 산업의 특성상 일별, 월별 유량 변동이 심하여 유량조정조의 설계 및 운전방법이 중요하며, 유량조정조 교반시 포기식 교반을 적용하면 산발효 방지를 통하여 후속 응집/부상 공정의 약품비 절감이 가능하다. 동 현장은 유량조정조, 가압부상조, iMBR을 거쳐 방류하며, 이때 가압부상조를 거쳐 iMBR로 유입되는 BOD, $COD_{Mn}$, SS, T-N, T-P의 농도는 2,291 mg/L, 530 mg/L, 38 mg/L, 256.8 mg/L, 13.5 mg/L으로 나타났다. 수산물 가공 폐수와 같이 고농도의 염이 함유된 폐수의 생물학적 처리는 슬러지의 침강성과 관계없는 침지식 중공사막을 이용한 iMBR 공법을 적용하는것이 바람직한 것으로 나타났다. iMBR 공정의 주요 에너지 소모 요인인 공기세정에 대한 운영 값의 검토 결과 SADm값이 $0.31m^3/hr{\cdot}m^2$ membrane area이었으며, SADp값은 $26.5m^3/hr{\cdot}m^3$ permeate으로 상용화된 평막 대비 월등히 에너지 효율이 우수한 것으로 나타났다. 무산소, 혐기, 호기 탈기조로 구성된 침지식 중공사막이 결합된 iMBR 공정에서 막오염 지표인 Normalized TMP와 온도, MLSS 등을 비교 분석한 결과 F/M비가 0.08~0.10 gBOD/gMLSS에서 임계 F/M 값을 나타냈다. 생물반응조에서의 BOD, $COD_{Mn}$, SS, T-N, T-P의 처리수질은 각각 1.8 mg/L, 11.0 mg/L, 1.1 mg/L, 11.0 mg/L, 0.24 mg/L으로 운전되었으며, 제거율은 99.9%, 97.9%, 96.3%, 95.7%, 97.8%으로 나타났다.

The study is the result of an practical operation analysis for the full scale fishery product wastewater treatment plant with immersed MBR (iMBR) process. Since fishery product industries show a wide range of wastewater generation by the season, design and operation of the equalization basin are very important factor. The aeration system for the equalization basin mixing can save the chemical consumption for followed system through the restriction of acid fermentation. The concentrations of wastewater primary DAF process treated were BOD 2,291 mg/L, $COD_{Mn}$ 530 mg/L, SS 256.8 mg/L, T-N 38 mg/L, T-P 13.5 mg/L respectively. It was considered that iMBR is the most efficient biological process for high salinity content wastewater since It is irrelevant to the capability of the sludge precipitation. SADp and SADm were 0.31, $26.5m^3/hr{\cdot}m^3$ respectively. In iMBR process, the critical F/M ratio was derived at 0.08~0.10 gBOD/gMLSS by analysing the correlations between MLSS, normalized TMP and temperature. The effluent concentrations were BOD 1.8 mg/L, $COD_{Mn}$ 12.4 mg/L, SS 1.0 mg/L, T-N 7.85 mg/L, T-P 0.1 mg/L and removal efficiencies were 99.9%, 97.6%, 96.3%, 95.7%, 97.8% respectively.

키워드

참고문헌

  1. Chowdhury, P., Viraraghavan, T. and Srinivasan, A., "Biological treatment processes for fish processing wastewater - A review," Bioresour. Technol., 101, 439-449(2010). https://doi.org/10.1016/j.biortech.2009.08.065
  2. Statistics Korea Fisheries production statistics, Korea Rural Economic Institute Food Balance Sheet.
  3. Choi, Y. B., "Effects of Salt on the Biological Treatment of Seafood Wastewater"(2011).
  4. Ministry of Oceans and Fisheries, "A Study on fostering for competitive processing industry"(2015).
  5. Ministry of Environment official announcement No. 2004-188, "Standard method of water pollution inspection"(2004).
  6. National Institute Of Environmental Research "A Study on the Unit Mass Discharge from Wastewater Producing Facilities (3)"(1998).
  7. Lefebve, O. and Molketta., R. "Treatment of organic pollution in industrial saline wastewater: a literature review," Water Res., 40, 3671-3682(2006). https://doi.org/10.1016/j.watres.2006.08.027
  8. Moon, B.-H., Yun, J.-H., Seo, G.-T. and Kim, S.-S., "Effects of C/N Ratio and Salt Concentration on Pollutant Removal in SBR," Korean Soc. Environ. Eng., 24(2), 251-260(2002).
  9. Lay, W. C. L., Liu, Y. and Fane, A. G., "Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review," Water Res., 44, 21-40(2010). https://doi.org/10.1016/j.watres.2009.09.026
  10. Choi, Y.-B., Lee, H.-S., Han, D.-J. and Kwon, J.-H., "A Study on Management of Seafood Wastewater Treatment Facility using Submerged MBR," J. Korea Academia-Industrial Cooperation Soc., 16(11), 7227-7236(2015). https://doi.org/10.5762/KAIS.2015.16.11.7227
  11. Slade, A. H., Thorn, G. J. and Dennis, M. A., "The relationship between BOD : N ratio and wastewater treatability in a nitrogen-fixing wastewater treatment system," Water Sci. Technol., 63(4), 627-632(2011). https://doi.org/10.2166/wst.2011.215
  12. Doosan Hydro Technology, LLC, "Low energy no aeration MBR for mining wastewater treatment," AMTA technology transfer workshop, keystone, CO, Dec. 9(2014).
  13. Simon Judd, "The MBR Book: Principles and applications of membrane bioreactors in water and wastewater treatment," Elsevier Ltd.(2006).
  14. Chen, G, H. and Wong, M. T., "Impact of increased chloride concentration on nitrifying - activated culture," J. Environ. Eng. - ASCE, 130(2), 116-125(2004). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:2(116)
  15. Field, R. W., Wu, D., Howell, J. A. and Gupta, B. B., "Critical flux concept for microfiltration fouling," J. Membr. Sci., 100, 259-272(1995). https://doi.org/10.1016/0376-7388(94)00265-Z
  16. Field, R. W. and Pearce, G. K., "Critical, sustainable and threshold fluses for membrane with water industry applications," Adv. Colloid and Interface Sci., 164, 38-44(2011). https://doi.org/10.1016/j.cis.2010.12.008
  17. Yoon, S. H., OnlineMBR homepage, http://onlinembr.info/.
  18. Leeavb, Y. H., Cho, J. W., Sea, Y. W., Lee, J. W. and Ahn, K.-H., "Modeling of submerged membrane bioreactor process for wastewater treatment," Desalination, 146, 451-457(2002). https://doi.org/10.1016/S0011-9164(02)00543-X