DOI QR코드

DOI QR Code

Case Studies for SMR Natural Gas Liquefaction Plant by Capacity in Small Scale Gas Wells through Cost Analysis

소규모 가스전 규모에 따른 SMR 천연가스 액화 플랜트 용량별 비용 분석 사례연구

  • Lee, Inkyu (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Cho, Seungsik (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Seungjun (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Moon, Il (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
  • 이인규 (연세대학교 화공생명공학과) ;
  • 조승식 (연세대학교 화공생명공학과) ;
  • 이승준 (연세대학교 화공생명공학과) ;
  • 문일 (연세대학교 화공생명공학과)
  • Received : 2015.11.25
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

Natural gas liquefaction process which spends a huge amount energy is operated under cryogenic conditions. Thus, many researchers have studied on minimizing energy consumption of LNG plant. However, a few studied for cost optimization have performed. This study focused on the cost analysis for the single mixed refrigerant (SMR) process, one of the simplest natural gas liquefaction process, which has different capacity. The process capacity is increased from 1 million ton per annum (MTPA) to 2.5 MTPA by 0.5 MTPA steps. According to the increase of plant size, only flow rate of natural gas and mixed refrigerant are increased and other operating conditions are fixed. Aspen Economic Evaluator(v.8.7) is used for the cost analysis and six tenths factor rule is applied to obtain multi stream heat exchanger cost data which is not supplied by Aspen Economic Evaluator. Moreover, the optimal plant sizes for different sizes of gas wells are found as the result of applying plant cost to small scale gas wells, 20 million ton (MT), 40 MT, and 80 MT. Through this cost analysis, the foundation is built to optimize LNG plant in terms of the cost.

천연가스 액화공정은 극저온에서 운전되며, 에너지 집약적이다. 따라서 에너지 소모량을 최소화하기 위한 최적화 연구가 많이 진행되고 있으나, 천연가스 액화공정의 용량에 따른 비용 최적화는 많이 이루어지지 않고 있다. 본 연구에서는 다양한 천연가스 액화공정 중 SMR (Single Mixed Refrigerant) 공정을 대상으로, 용량별 설치비용과 운전비용을 분석하였다. SMR 공정의 용량은 1 MTPA (million ton per annum)부터 0.5 MTPA 단위로 증가하여 2.5 MTPA까지 설정하였다. 플랜트 용량의 증가에 따라 천연가스와 냉매의 유량만을 증가시켰으며, 온도, 압력, 조성 등 다른 운전조건은 모든 용량에서 동일하게 적용하였다. 비용 분석을 위해 Aspen Economic Evaluator(v8.7)를 사용하였으며, 비용 정보를 얻기 힘든 다중 흐름 열교환기의 경우에는 six tenths factor rule을 적용하여 계산하였다. 또한 용량별 SMR 공정의 비용 연구결과를 2천만 톤, 4천만 톤 및 8천만 톤 규모의 소규모 가스전에 대하여 적용한 결과, 가스전 규모에 따라 최적의 플랜트 용량을 찾을 수 있었다. 이러한 비용 분석을 통해 비용기반 최적화의 발판을 마련하였다.

Keywords

References

  1. The Outlook for Energy, A view to 2040, Exxon Mobile, (2015)
  2. Kumar. S., Kwon. H., Choi. K., Lim. W., Cho. J. H., Tak. K., and Moon. I., "LNG: An eco-friendly cryogenic fuel for sustainable development", Applied Energy, 88, 4264-4273, (2011) https://doi.org/10.1016/j.apenergy.2011.06.035
  3. Kirillov. N. G., "Analysis of modern natural gas liquefaction technologies", Chemical and Petroleum Engineering, 40, 401-406, (2004) https://doi.org/10.1023/B:CAPE.0000047655.67704.dc
  4. Hatcher. P., Khalilpour, R., and Abbas, A., "Optimisation of LNG mixed-refrigerant processes considering operation and design objectives", Computers and Chemical Engineering, 41, 123-133, (2012) https://doi.org/10.1016/j.compchemeng.2012.03.005
  5. Lee. I., Tak. K., Lee. S., Ko. D., and Moon. I., "Decision Making on Liquefaction Ratio for Minimizing Specific Energy in a LNG Pilot Plant", Industrial & Engineering Chemistry Research, 54, 12920-12927, (2015) https://doi.org/10.1021/acs.iecr.5b03687
  6. Tak. K., Lee. I., Kwon. H., Kim. J., Ko. D., and Moon. I., "Comparison of Multistage Compression Configurations for Single Mixed Refrigerant Processes", Industrial & Engineering Chemistry Research, 54, 9992-10000, (2015) https://doi.org/10.1021/acs.iecr.5b00936
  7. Lim. W., Choi. K., and Moon. I., "Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design", Industrial & Engineering Chemistry Research, 52, 3065-3088, (2013) https://doi.org/10.1021/ie302877g
  8. Wang. M., Zhang. J., and Xu. Q., "Optimal design and operation of a C3MR refrigeration system for natural gas liquefaction", Computers and Chemical Engineering, 39, 84-95, (2012) https://doi.org/10.1016/j.compchemeng.2011.12.003
  9. Alabdulkarem. A., Mortazav. A., and Hwang. Y., Radermacher. R., Rogers. P., "Optimization of propane pre-cooled mixed refrigerant LNG plant", Applied Thermal Engineering, 31, 1091-1098, (2011) https://doi.org/10.1016/j.applthermaleng.2010.12.003
  10. Norwegian University of Science and Technology, Modelling of Multistream LNG Heat Exchangers, (2011)
  11. Moore. F. T., "Economies of Scale: Some Statistical Evidence", Oxford University Press, 73, 232-245, (1959) https://doi.org/10.2307/1883722